MCMC sampling for joint estimation of phase distortions and transmitted symbols in OFDM systems

In this paper, we address the challenging problem of the OFDM reception in the presence of phase distortions. Phase noise and carrier frequency offset seriously degrade the performances of OFDM systems by destroying orthogonality of the subcarriers. Based on a Markov Chain Monte Carlo sampling mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing 2011-03, Vol.21 (2), p.341-353
Hauptverfasser: Septier, François, Delignon, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we address the challenging problem of the OFDM reception in the presence of phase distortions. Phase noise and carrier frequency offset seriously degrade the performances of OFDM systems by destroying orthogonality of the subcarriers. Based on a Markov Chain Monte Carlo sampling mechanization, our approach consists in jointly estimating the phase noise, the frequency offset and the transmitted symbols. The proposed algorithm is implemented in the time domain in order to benefit from the redundancy information induced by the cyclic prefix and from the time correlation of the OFDM signal owing to the presence of virtual and/or pilot subcarriers. The algorithm's efficiency is enhanced by incorporating the Rao-Blackwellization technique as well as various sampling improvement strategies. Simulation results, provided in terms of bit error rate (BER) and mean square error (MSE), clearly illustrate the efficiency and the robustness of the proposed estimator.
ISSN:1051-2004
1095-4333
DOI:10.1016/j.dsp.2010.10.003