Identification of the Multivariate Fractional Brownian Motion

This paper deals with the identification of the multivariate fractional Brownian motion, a recently developed extension of the fractional Brownian motion to the multivariate case. This process is a p -multivariate self-similar Gaussian process parameterized by p different Hurst exponents Hi , p scal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2011-11, Vol.59 (11), p.5152-5168
Hauptverfasser: Amblard, P-O, Coeurjolly, J-F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the identification of the multivariate fractional Brownian motion, a recently developed extension of the fractional Brownian motion to the multivariate case. This process is a p -multivariate self-similar Gaussian process parameterized by p different Hurst exponents Hi , p scaling coefficients σ i (of each component) and also by p ( p -1) coefficients ρ ij ,η ij (for i , j =1, ..., p with j >; i ) allowing two components to be more or less strongly correlated and allowing the process to be time reversible or not. We investigate the use of discrete filtering techniques to estimate jointly or separately the different parameters and prove the efficiency of the methodology with a simulation study and the derivation of asymptotic results.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2011.2162835