Mitochondrial permeability transition pore in Alzheimer's disease: Cyclophilin D and amyloid beta
Amyloid beta (Aβ) plays a critical role in the pathophysiology of Alzheimer's disease. Increasing evidence indicates mitochondria as an important target of Aβ toxicity; however, the effects of Aβ toxicity on mitochondria have not yet been fully elucidated. Recent biochemical studies in vivo and...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta 2010-01, Vol.1802 (1), p.198-204 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Amyloid beta (Aβ) plays a critical role in the pathophysiology of Alzheimer's disease. Increasing evidence indicates mitochondria as an important target of Aβ toxicity; however, the effects of Aβ toxicity on mitochondria have not yet been fully elucidated. Recent biochemical studies in vivo and in vitro implicate mitochondrial permeability transition pore (mPTP) formation involvement in Aβ-mediated mitochondrial dysfunction. mPTP formation results in severe mitochondrial dysfunction such as reactive oxygen species (ROS) generation, mitochondrial membrane potential dissipation, intracellular calcium perturbation, decrease in mitochondrial respiration, release of pro-apoptotic factors and eventually cell death. Cyclophilin D (CypD) is one of the more well-known mPTP components and recent findings reveal that Aβ has significant impact on CypD-mediated mPTP formation. In this review, the role of Aβ in the formation of mPTP and the potential of mPTP inhibition as a therapeutic strategy in AD treatment are examined. |
---|---|
ISSN: | 0925-4439 0006-3002 1879-260X 0006-3002 |
DOI: | 10.1016/j.bbadis.2009.07.005 |