Optimal distribution of viscous dissipation in a multi-scale branched fluid distributor

This paper examines some theoretical aspects of the optimal design of multi-scale fluid distributors or collectors, built on a binary or quaternary branching pattern of pores. The design aims to distribute uniformly a fluid flow over a specified square surface (uniform irrigation) while simultaneous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermal sciences 2005-12, Vol.44 (12), p.1131-1141
Hauptverfasser: Luo, L., Tondeur, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines some theoretical aspects of the optimal design of multi-scale fluid distributors or collectors, built on a binary or quaternary branching pattern of pores. The design aims to distribute uniformly a fluid flow over a specified square surface (uniform irrigation) while simultaneously minimizing the residence time, the residence-time distribution, the pressure drop and the viscous dissipation, leading to an optimization problem of the pore-size distribution, for both length and diameter. For the binary branching, the uniform distribution of outlet points requires a particular, non-monotonous scaling law for pore lengths, and this distinguishes the structure from fractal branching patterns that have been studied previously. The quaternary branching allows a fractal-type structure (constant scale ratios for both pore length and radius). An important general result is established: in the optimal pore-size distribution, the density of viscous dissipation power (W⋅m −3) is uniformly distributed over the volume at all scales.
ISSN:1290-0729
1778-4166
DOI:10.1016/j.ijthermalsci.2005.08.012