Risk bounds for new M-estimation problems

In this paper, we consider a new framework where two types of data are available: experimental data Y1,...,Yn supposed to be i.i.d from Y and outputs from a simulated reduced model. We develop a procedure for parameter estimation to characterize a feature of the phenomenon Y. We prove a risk bound q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability and statistics 2013-01, Vol.17, p.740-766
Hauptverfasser: Rachdi, Nabil, Fort, Jean-Claude, Klein, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a new framework where two types of data are available: experimental data Y1,...,Yn supposed to be i.i.d from Y and outputs from a simulated reduced model. We develop a procedure for parameter estimation to characterize a feature of the phenomenon Y. We prove a risk bound qualifying the proposed procedure in terms of the number of experimental data n, reduced model complexity and computing budget m. The method we present is general enough to cover a wide range of applications. To illustrate our procedure we provide a numerical example.
ISSN:1292-8100
1262-3318
DOI:10.1051/ps/2012025