The coalescence and organization of lahars at Semeru volcano, Indonesia
We present multi-parameter geophysical measurements of rainfall-induced lahars at Semeru Volcano, East Java, using two observation sites 510 m apart, 11.5 km from the summit. Our study site in the Curah Lengkong channel is composed of a 30-m wide box-valley, with a base of gravel and lava bedrock, r...
Gespeichert in:
Veröffentlicht in: | Bulletin of volcanology 2010-10, Vol.72 (8), p.961-970 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present multi-parameter geophysical measurements of rainfall-induced lahars at Semeru Volcano, East Java, using two observation sites 510 m apart, 11.5 km from the summit. Our study site in the Curah Lengkong channel is composed of a 30-m wide box-valley, with a base of gravel and lava bedrock, representing an ideal geometry for high density measurements of active lahars. Instrumentation included pore-pressure sensors (stage), a broad-band seismograph (arrival times, vibrational energy, and turbulence), video footage, and direct bucket sampling. A total of 8 rainfall-induced lahars were recorded, with durations of 1–3 h, heights 0.5–2 m, and peak velocities 3–6 m/s. Flow types ranged from dilute to dense hyperconcentrated flows. These recorded flows were commonly composed of partly coalesced, discrete and unsteady gravity current packets, represented by multiple peaks within each lahar. These packets most likely originate from multiple lahar sources, and can be traced between instrument sites. Those with the highest concentrations and greatest wetted areas were often located mid-lahar at our measured reach, accelerating towards the flow front. As these lahars travel downstream, the individual packets thus coalesce and the flow develops a more organised structure. Observations of different degrees of coalescence between these discrete flow packets illustrate that a single mature debris flow may have formed from multiple dynamically independent lahars, each with different origins. |
---|---|
ISSN: | 0258-8900 1432-0819 |
DOI: | 10.1007/s00445-010-0381-8 |