Intrinsic variability of latency to first-spike

The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 2010-07, Vol.103 (1), p.43-56
Hauptverfasser: Gilles, Wainrib, Michèle, Thieullen, Khashayar, Pakdaman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 43
container_title Biological cybernetics
container_volume 103
creator Gilles, Wainrib
Michèle, Thieullen
Khashayar, Pakdaman
description The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distribution of latency, together with an explicit expression for its variance. Consequences in terms of information processing are studied with Fisher information in the Morris-Lecar model. A competition between sensitivity to input and precision is responsible for favoring two distinct regimes of latencies.
doi_str_mv 10.1007/s00422-010-0384-8
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00521672v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753642590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-dc8694e40bdb91f4e3da1589eb130be6338f3278bb18ef6c80959a24a1aea0793</originalsourceid><addsrcrecordid>eNqFkctu2zAQRYkiQeM8PqCbVugmyELNcIaiyGVgNA_AQBdt1gQlUwkTWXJI2YD_PnTkuEAW7YrA8Nw7j8vYFw4_OEB5GQEEYg4cciAlcvWJTbigVClLOGATIAE5R4AjdhzjEwBoLPRndoRAJWqECbu864bgu-jrbG2Dt5Vv_bDJ-iZr7eC6epMNfdb4EIc8Lv2zO2WHjW2jO9u9J-z--uef6W0--3VzN72a5bWQMOTzWkktnIBqXmneCEdzywulXcUJKieJVENYqqriyjWyVqALbVFYbp2FUtMJuxh9H21rlsEvbNiY3npzezUz2xpAgVyWuOaJPR_ZZehfVi4OZuFj7drWdq5fRVMWJEVaHP5PEmEBkopEfv9APvWr0KWVDUmpEfHNjo9QHfoYg2v2k3Iw24TMmJBJCZltQkYlzded8apauPle8R5JAnAEYvrqHlz42_lfrt9GUWN7Yx-Cj-b-N0I6NleFIJL0CurVoSU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>366922290</pqid></control><display><type>article</type><title>Intrinsic variability of latency to first-spike</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Gilles, Wainrib ; Michèle, Thieullen ; Khashayar, Pakdaman</creator><creatorcontrib>Gilles, Wainrib ; Michèle, Thieullen ; Khashayar, Pakdaman</creatorcontrib><description>The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distribution of latency, together with an explicit expression for its variance. Consequences in terms of information processing are studied with Fisher information in the Morris-Lecar model. A competition between sensitivity to input and precision is responsible for favoring two distinct regimes of latencies.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-010-0384-8</identifier><identifier>PMID: 20372920</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Action Potentials - physiology ; Animals ; Assessments ; Asymptotic properties ; Bioinformatics ; Biology ; Biomedical and Life Sciences ; Biomedicine ; Cell Membrane - physiology ; Central Nervous System - physiology ; Channel noise ; Complex Systems ; Computer Appl. in Life Sciences ; Cybernetics ; Fisher information ; Gain ; Humans ; Ion Channel Gating - physiology ; Ion channels ; Ions ; Latency coding ; Life Sciences ; Mathematical models ; Morris-Lecar model ; Neurobiology ; Neurons ; Neurons - physiology ; Neurosciences ; Original Paper ; Other ; Reaction Time - physiology ; Spikes ; Synaptic Transmission - physiology</subject><ispartof>Biological cybernetics, 2010-07, Vol.103 (1), p.43-56</ispartof><rights>Springer-Verlag 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-dc8694e40bdb91f4e3da1589eb130be6338f3278bb18ef6c80959a24a1aea0793</citedby><cites>FETCH-LOGICAL-c460t-dc8694e40bdb91f4e3da1589eb130be6338f3278bb18ef6c80959a24a1aea0793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-010-0384-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-010-0384-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20372920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00521672$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilles, Wainrib</creatorcontrib><creatorcontrib>Michèle, Thieullen</creatorcontrib><creatorcontrib>Khashayar, Pakdaman</creatorcontrib><title>Intrinsic variability of latency to first-spike</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distribution of latency, together with an explicit expression for its variance. Consequences in terms of information processing are studied with Fisher information in the Morris-Lecar model. A competition between sensitivity to input and precision is responsible for favoring two distinct regimes of latencies.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Assessments</subject><subject>Asymptotic properties</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Membrane - physiology</subject><subject>Central Nervous System - physiology</subject><subject>Channel noise</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Cybernetics</subject><subject>Fisher information</subject><subject>Gain</subject><subject>Humans</subject><subject>Ion Channel Gating - physiology</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Latency coding</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Morris-Lecar model</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Other</subject><subject>Reaction Time - physiology</subject><subject>Spikes</subject><subject>Synaptic Transmission - physiology</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu2zAQRYkiQeM8PqCbVugmyELNcIaiyGVgNA_AQBdt1gQlUwkTWXJI2YD_PnTkuEAW7YrA8Nw7j8vYFw4_OEB5GQEEYg4cciAlcvWJTbigVClLOGATIAE5R4AjdhzjEwBoLPRndoRAJWqECbu864bgu-jrbG2Dt5Vv_bDJ-iZr7eC6epMNfdb4EIc8Lv2zO2WHjW2jO9u9J-z--uef6W0--3VzN72a5bWQMOTzWkktnIBqXmneCEdzywulXcUJKieJVENYqqriyjWyVqALbVFYbp2FUtMJuxh9H21rlsEvbNiY3npzezUz2xpAgVyWuOaJPR_ZZehfVi4OZuFj7drWdq5fRVMWJEVaHP5PEmEBkopEfv9APvWr0KWVDUmpEfHNjo9QHfoYg2v2k3Iw24TMmJBJCZltQkYlzded8apauPle8R5JAnAEYvrqHlz42_lfrt9GUWN7Yx-Cj-b-N0I6NleFIJL0CurVoSU</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Gilles, Wainrib</creator><creator>Michèle, Thieullen</creator><creator>Khashayar, Pakdaman</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20100701</creationdate><title>Intrinsic variability of latency to first-spike</title><author>Gilles, Wainrib ; Michèle, Thieullen ; Khashayar, Pakdaman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-dc8694e40bdb91f4e3da1589eb130be6338f3278bb18ef6c80959a24a1aea0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Assessments</topic><topic>Asymptotic properties</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Membrane - physiology</topic><topic>Central Nervous System - physiology</topic><topic>Channel noise</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Cybernetics</topic><topic>Fisher information</topic><topic>Gain</topic><topic>Humans</topic><topic>Ion Channel Gating - physiology</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Latency coding</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Morris-Lecar model</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Other</topic><topic>Reaction Time - physiology</topic><topic>Spikes</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilles, Wainrib</creatorcontrib><creatorcontrib>Michèle, Thieullen</creatorcontrib><creatorcontrib>Khashayar, Pakdaman</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilles, Wainrib</au><au>Michèle, Thieullen</au><au>Khashayar, Pakdaman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic variability of latency to first-spike</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>103</volume><issue>1</issue><spage>43</spage><epage>56</epage><pages>43-56</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distribution of latency, together with an explicit expression for its variance. Consequences in terms of information processing are studied with Fisher information in the Morris-Lecar model. A competition between sensitivity to input and precision is responsible for favoring two distinct regimes of latencies.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20372920</pmid><doi>10.1007/s00422-010-0384-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-1200
ispartof Biological cybernetics, 2010-07, Vol.103 (1), p.43-56
issn 0340-1200
1432-0770
language eng
recordid cdi_hal_primary_oai_HAL_hal_00521672v1
source MEDLINE; SpringerLink Journals
subjects Action Potentials - physiology
Animals
Assessments
Asymptotic properties
Bioinformatics
Biology
Biomedical and Life Sciences
Biomedicine
Cell Membrane - physiology
Central Nervous System - physiology
Channel noise
Complex Systems
Computer Appl. in Life Sciences
Cybernetics
Fisher information
Gain
Humans
Ion Channel Gating - physiology
Ion channels
Ions
Latency coding
Life Sciences
Mathematical models
Morris-Lecar model
Neurobiology
Neurons
Neurons - physiology
Neurosciences
Original Paper
Other
Reaction Time - physiology
Spikes
Synaptic Transmission - physiology
title Intrinsic variability of latency to first-spike
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20variability%20of%20latency%20to%20first-spike&rft.jtitle=Biological%20cybernetics&rft.au=Gilles,%20Wainrib&rft.date=2010-07-01&rft.volume=103&rft.issue=1&rft.spage=43&rft.epage=56&rft.pages=43-56&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-010-0384-8&rft_dat=%3Cproquest_hal_p%3E753642590%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=366922290&rft_id=info:pmid/20372920&rfr_iscdi=true