Intrinsic variability of latency to first-spike
The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distri...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 2010-07, Vol.103 (1), p.43-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Biological cybernetics |
container_volume | 103 |
creator | Gilles, Wainrib Michèle, Thieullen Khashayar, Pakdaman |
description | The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distribution of latency, together with an explicit expression for its variance. Consequences in terms of information processing are studied with Fisher information in the Morris-Lecar model. A competition between sensitivity to input and precision is responsible for favoring two distinct regimes of latencies. |
doi_str_mv | 10.1007/s00422-010-0384-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00521672v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>753642590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-dc8694e40bdb91f4e3da1589eb130be6338f3278bb18ef6c80959a24a1aea0793</originalsourceid><addsrcrecordid>eNqFkctu2zAQRYkiQeM8PqCbVugmyELNcIaiyGVgNA_AQBdt1gQlUwkTWXJI2YD_PnTkuEAW7YrA8Nw7j8vYFw4_OEB5GQEEYg4cciAlcvWJTbigVClLOGATIAE5R4AjdhzjEwBoLPRndoRAJWqECbu864bgu-jrbG2Dt5Vv_bDJ-iZr7eC6epMNfdb4EIc8Lv2zO2WHjW2jO9u9J-z--uef6W0--3VzN72a5bWQMOTzWkktnIBqXmneCEdzywulXcUJKieJVENYqqriyjWyVqALbVFYbp2FUtMJuxh9H21rlsEvbNiY3npzezUz2xpAgVyWuOaJPR_ZZehfVi4OZuFj7drWdq5fRVMWJEVaHP5PEmEBkopEfv9APvWr0KWVDUmpEfHNjo9QHfoYg2v2k3Iw24TMmJBJCZltQkYlzded8apauPle8R5JAnAEYvrqHlz42_lfrt9GUWN7Yx-Cj-b-N0I6NleFIJL0CurVoSU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>366922290</pqid></control><display><type>article</type><title>Intrinsic variability of latency to first-spike</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Gilles, Wainrib ; Michèle, Thieullen ; Khashayar, Pakdaman</creator><creatorcontrib>Gilles, Wainrib ; Michèle, Thieullen ; Khashayar, Pakdaman</creatorcontrib><description>The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distribution of latency, together with an explicit expression for its variance. Consequences in terms of information processing are studied with Fisher information in the Morris-Lecar model. A competition between sensitivity to input and precision is responsible for favoring two distinct regimes of latencies.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-010-0384-8</identifier><identifier>PMID: 20372920</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Action Potentials - physiology ; Animals ; Assessments ; Asymptotic properties ; Bioinformatics ; Biology ; Biomedical and Life Sciences ; Biomedicine ; Cell Membrane - physiology ; Central Nervous System - physiology ; Channel noise ; Complex Systems ; Computer Appl. in Life Sciences ; Cybernetics ; Fisher information ; Gain ; Humans ; Ion Channel Gating - physiology ; Ion channels ; Ions ; Latency coding ; Life Sciences ; Mathematical models ; Morris-Lecar model ; Neurobiology ; Neurons ; Neurons - physiology ; Neurosciences ; Original Paper ; Other ; Reaction Time - physiology ; Spikes ; Synaptic Transmission - physiology</subject><ispartof>Biological cybernetics, 2010-07, Vol.103 (1), p.43-56</ispartof><rights>Springer-Verlag 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-dc8694e40bdb91f4e3da1589eb130be6338f3278bb18ef6c80959a24a1aea0793</citedby><cites>FETCH-LOGICAL-c460t-dc8694e40bdb91f4e3da1589eb130be6338f3278bb18ef6c80959a24a1aea0793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-010-0384-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-010-0384-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20372920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00521672$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilles, Wainrib</creatorcontrib><creatorcontrib>Michèle, Thieullen</creatorcontrib><creatorcontrib>Khashayar, Pakdaman</creatorcontrib><title>Intrinsic variability of latency to first-spike</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distribution of latency, together with an explicit expression for its variance. Consequences in terms of information processing are studied with Fisher information in the Morris-Lecar model. A competition between sensitivity to input and precision is responsible for favoring two distinct regimes of latencies.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Assessments</subject><subject>Asymptotic properties</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Membrane - physiology</subject><subject>Central Nervous System - physiology</subject><subject>Channel noise</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Cybernetics</subject><subject>Fisher information</subject><subject>Gain</subject><subject>Humans</subject><subject>Ion Channel Gating - physiology</subject><subject>Ion channels</subject><subject>Ions</subject><subject>Latency coding</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Morris-Lecar model</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Original Paper</subject><subject>Other</subject><subject>Reaction Time - physiology</subject><subject>Spikes</subject><subject>Synaptic Transmission - physiology</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu2zAQRYkiQeM8PqCbVugmyELNcIaiyGVgNA_AQBdt1gQlUwkTWXJI2YD_PnTkuEAW7YrA8Nw7j8vYFw4_OEB5GQEEYg4cciAlcvWJTbigVClLOGATIAE5R4AjdhzjEwBoLPRndoRAJWqECbu864bgu-jrbG2Dt5Vv_bDJ-iZr7eC6epMNfdb4EIc8Lv2zO2WHjW2jO9u9J-z--uef6W0--3VzN72a5bWQMOTzWkktnIBqXmneCEdzywulXcUJKieJVENYqqriyjWyVqALbVFYbp2FUtMJuxh9H21rlsEvbNiY3npzezUz2xpAgVyWuOaJPR_ZZehfVi4OZuFj7drWdq5fRVMWJEVaHP5PEmEBkopEfv9APvWr0KWVDUmpEfHNjo9QHfoYg2v2k3Iw24TMmJBJCZltQkYlzded8apauPle8R5JAnAEYvrqHlz42_lfrt9GUWN7Yx-Cj-b-N0I6NleFIJL0CurVoSU</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Gilles, Wainrib</creator><creator>Michèle, Thieullen</creator><creator>Khashayar, Pakdaman</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20100701</creationdate><title>Intrinsic variability of latency to first-spike</title><author>Gilles, Wainrib ; Michèle, Thieullen ; Khashayar, Pakdaman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-dc8694e40bdb91f4e3da1589eb130be6338f3278bb18ef6c80959a24a1aea0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Assessments</topic><topic>Asymptotic properties</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Membrane - physiology</topic><topic>Central Nervous System - physiology</topic><topic>Channel noise</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Cybernetics</topic><topic>Fisher information</topic><topic>Gain</topic><topic>Humans</topic><topic>Ion Channel Gating - physiology</topic><topic>Ion channels</topic><topic>Ions</topic><topic>Latency coding</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Morris-Lecar model</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Original Paper</topic><topic>Other</topic><topic>Reaction Time - physiology</topic><topic>Spikes</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilles, Wainrib</creatorcontrib><creatorcontrib>Michèle, Thieullen</creatorcontrib><creatorcontrib>Khashayar, Pakdaman</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilles, Wainrib</au><au>Michèle, Thieullen</au><au>Khashayar, Pakdaman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic variability of latency to first-spike</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>103</volume><issue>1</issue><spage>43</spage><epage>56</epage><pages>43-56</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distribution of latency, together with an explicit expression for its variance. Consequences in terms of information processing are studied with Fisher information in the Morris-Lecar model. A competition between sensitivity to input and precision is responsible for favoring two distinct regimes of latencies.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20372920</pmid><doi>10.1007/s00422-010-0384-8</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 2010-07, Vol.103 (1), p.43-56 |
issn | 0340-1200 1432-0770 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00521672v1 |
source | MEDLINE; SpringerLink Journals |
subjects | Action Potentials - physiology Animals Assessments Asymptotic properties Bioinformatics Biology Biomedical and Life Sciences Biomedicine Cell Membrane - physiology Central Nervous System - physiology Channel noise Complex Systems Computer Appl. in Life Sciences Cybernetics Fisher information Gain Humans Ion Channel Gating - physiology Ion channels Ions Latency coding Life Sciences Mathematical models Morris-Lecar model Neurobiology Neurons Neurons - physiology Neurosciences Original Paper Other Reaction Time - physiology Spikes Synaptic Transmission - physiology |
title | Intrinsic variability of latency to first-spike |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20variability%20of%20latency%20to%20first-spike&rft.jtitle=Biological%20cybernetics&rft.au=Gilles,%20Wainrib&rft.date=2010-07-01&rft.volume=103&rft.issue=1&rft.spage=43&rft.epage=56&rft.pages=43-56&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-010-0384-8&rft_dat=%3Cproquest_hal_p%3E753642590%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=366922290&rft_id=info:pmid/20372920&rfr_iscdi=true |