Intrinsic variability of latency to first-spike
The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distri...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 2010-07, Vol.103 (1), p.43-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The assessment of the variability of neuronal spike timing is fundamental to gain understanding of latency coding. Based on recent mathematical results, we investigate theoretically the impact of channel noise on latency variability. For large numbers of ion channels, we derive the asymptotic distribution of latency, together with an explicit expression for its variance. Consequences in terms of information processing are studied with Fisher information in the Morris-Lecar model. A competition between sensitivity to input and precision is responsible for favoring two distinct regimes of latencies. |
---|---|
ISSN: | 0340-1200 1432-0770 |
DOI: | 10.1007/s00422-010-0384-8 |