About randomised distributed graph colouring and graph partition algorithms
We present and analyse a very simple randomised distributed vertex colouring algorithm for arbitrary graphs of size n that halts in time O ( log n ) with probability 1 - o ( n - 1 ) . Each message containing 1 bit, its bit complexity per channel is O ( log n ) . From this algorithm, we deduce and an...
Gespeichert in:
Veröffentlicht in: | Information and computation 2010, Vol.208 (11), p.1296-1304 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present and analyse a very simple randomised distributed vertex colouring algorithm for arbitrary graphs of size
n that halts in time
O
(
log
n
)
with probability
1
-
o
(
n
-
1
)
.
Each message containing 1 bit, its bit complexity per channel is
O
(
log
n
)
.
From this algorithm, we deduce and analyse a randomised distributed vertex colouring algorithm for arbitrary graphs of maximum degree
Δ
and size
n that uses at most
Δ
+
1
colours and halts in time
O
(
log
n
)
with probability
1
-
o
(
n
-
1
)
.
We also obtain a partition algorithm for arbitrary graphs of size
n that builds a spanning forest in time
O
(
log
n
)
with probability
1
-
o
(
n
-
1
)
. We study some parameters such as the number, the size and the radius of trees of the spanning forest. |
---|---|
ISSN: | 0890-5401 1090-2651 |
DOI: | 10.1016/j.ic.2010.07.001 |