About randomised distributed graph colouring and graph partition algorithms

We present and analyse a very simple randomised distributed vertex colouring algorithm for arbitrary graphs of size n that halts in time O ( log n ) with probability 1 - o ( n - 1 ) . Each message containing 1 bit, its bit complexity per channel is O ( log n ) . From this algorithm, we deduce and an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation 2010, Vol.208 (11), p.1296-1304
Hauptverfasser: Métivier, Y., Robson, J.M., Saheb-Djahromi, N., Zemmari, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present and analyse a very simple randomised distributed vertex colouring algorithm for arbitrary graphs of size n that halts in time O ( log n ) with probability 1 - o ( n - 1 ) . Each message containing 1 bit, its bit complexity per channel is O ( log n ) . From this algorithm, we deduce and analyse a randomised distributed vertex colouring algorithm for arbitrary graphs of maximum degree Δ and size n that uses at most Δ + 1 colours and halts in time O ( log n ) with probability 1 - o ( n - 1 ) . We also obtain a partition algorithm for arbitrary graphs of size n that builds a spanning forest in time O ( log n ) with probability 1 - o ( n - 1 ) . We study some parameters such as the number, the size and the radius of trees of the spanning forest.
ISSN:0890-5401
1090-2651
DOI:10.1016/j.ic.2010.07.001