Empirical Likelihood based Confidence Regions for first order parameters of a heavy tailed distribution

Let $X_1, \ldots, X_n$ be some i.i.d. observations from a heavy tailed distribution $F$, i.e. such that the common distribution of the excesses over a high threshold $u_n$ can be approximated by a Generalized Pareto Distribution $G_{\gamma,\sigma_n}$ with $\gamma >0$. This work is devoted to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical planning and inference 2011-08, Vol.141 (8), p.2769-2786
Hauptverfasser: Worms, Julien, Worms, Rym
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $X_1, \ldots, X_n$ be some i.i.d. observations from a heavy tailed distribution $F$, i.e. such that the common distribution of the excesses over a high threshold $u_n$ can be approximated by a Generalized Pareto Distribution $G_{\gamma,\sigma_n}$ with $\gamma >0$. This work is devoted to the problem of finding confidence regions for the couple $(\gamma,\sigma_n)$ : combining the empirical likelihood methodology with estimation equations (close but not identical to the likelihood equations) introduced by J. Zhang (Australian and New Zealand J. Stat n.49(1), 2007), asymptotically valid confidence regions for $(\gamma,\sigma_n)$ are obtained and proved to perform better than Wald-type confidence regions (especially those derived from the asymptotic normality of the maximum likelihood estimators). By profiling out the scale parameter, confidence intervals for the tail index are also derived.
ISSN:0378-3758
1873-1171
DOI:10.1016/j.jspi.2011.03.002