Limit theorems for splitting trees with structured immigration and applications to biogeography
We consider a branching process with Poissonian immigration where individuals have inheritable types. At rate $\theta$, new individuals singly enter the total population and start a new population which evolves like a supercritical, homogeneous, binary Crump-Mode-Jagers process: individuals have i.i...
Gespeichert in:
Veröffentlicht in: | Advances in applied probability 2011-03, Vol.43 (1), p.276-300 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a branching process with Poissonian immigration where individuals have inheritable types. At rate $\theta$, new individuals singly enter the total population and start a new population which evolves like a supercritical, homogeneous, binary Crump-Mode-Jagers process: individuals have i.i.d. lifetimes durations (non necessarily exponential) during which they give birth independently at constant rate $b$. First, using spine decomposition, we relax previously known assumptions required for a.s. convergence of total population size. Then, we consider three models of structured populations: either all immigrants have a different type, or types are drawn in a discrete spectrum or in a continuous spectrum. In each model, the vector $(P_1,P_2,\dots)$ of relative abundances of surviving families converges a.s. In the first model, the limit is the GEM distribution with parameter $\theta/b$. |
---|---|
ISSN: | 0001-8678 |