TSPO over-expression increases motility, transmigration and proliferation properties of C6 rat glioma cells

Gliomas are one of the most malignant cancers. The molecular bases regulating the onset of such tumors are still poorly understood. The translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, is a mitochondrial permeability transition (MPT)-pore protein robustly e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2008-02, Vol.1782 (2), p.118-125
Hauptverfasser: Rechichi, Mariarosa, Salvetti, Alessandra, Chelli, Beatrice, Costa, Barbara, Da Pozzo, Eleonora, Spinetti, Francesca, Lena, Annalisa, Evangelista, Monica, Rainaldi, Giuseppe, Martini, Claudia, Gremigni, Vittorio, Rossi, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gliomas are one of the most malignant cancers. The molecular bases regulating the onset of such tumors are still poorly understood. The translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, is a mitochondrial permeability transition (MPT)-pore protein robustly expressed in gliomas and involved in the regulation of apoptosis and cell proliferation. TSPO expression levels have been correlated with tumor malignancy. Here we describe the production of C6 rat glioma cells engineered to over-express the TSPO protein with the aim of providing the first direct evidence of a correlation between TSPO expression level and glioma cell aggressiveness. We observed that TSPO potentiates proliferation, motility and transmigration capabilities as well as the ability to overcome contact-induced cell growth inhibition of glioma cells. On the whole, these data demonstrate that TSPO density influences metastatic potential of glioma cells. Since several data suggest that TSPO ligands may act as chemotherapeutic agents, in this paper we also demonstrate that TSPO ligand-induced cell death is dependent on TSPO density. These findings suggest that the use of TSPO ligands as chemotherapeutic agents could be effective on aggressive tumor cells with a high TSPO expression level.
ISSN:0925-4439
0006-3002
1879-260X
DOI:10.1016/j.bbadis.2007.12.001