Commutative combinatorial Hopf algebras
We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its noncommutative dual is realiz...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2008-08, Vol.28 (1), p.65-95 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose several constructions of commutative or cocommutative Hopf algebras based on various combinatorial structures and investigate the relations between them. A commutative Hopf algebra of permutations is obtained by a general construction based on graphs, and its noncommutative dual is realized in three different ways, in particular, as the Grossman–Larson algebra of heap-ordered trees. Extensions to endofunctions, parking functions, set compositions, set partitions, planar binary trees, and rooted forests are discussed. Finally, we introduce one-parameter families interpolating between different structures constructed on the same combinatorial objects. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-007-0077-0 |