Trees, functional equations, and combinatorial Hopf algebras
One of the main virtues of trees is the representation of formal solutions of various functional equations which can be cast in the form of fixed point problems. Basic examples include differential equations and functional (Lagrange) inversion in power series rings. When analyzed in terms of combina...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2008-10, Vol.29 (7), p.1682-1695 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the main virtues of trees is the representation of formal solutions of various functional equations which can be cast in the form of fixed point problems. Basic examples include differential equations and functional (Lagrange) inversion in power series rings. When analyzed in terms of combinatorial Hopf algebras, the simplest examples yield interesting algebraic identities or enumerative results. |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1016/j.ejc.2007.09.005 |