Trees, functional equations, and combinatorial Hopf algebras

One of the main virtues of trees is the representation of formal solutions of various functional equations which can be cast in the form of fixed point problems. Basic examples include differential equations and functional (Lagrange) inversion in power series rings. When analyzed in terms of combina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2008-10, Vol.29 (7), p.1682-1695
Hauptverfasser: Hivert, Florent, Novelli, Jean-Christophe, Thibon, Jean-Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the main virtues of trees is the representation of formal solutions of various functional equations which can be cast in the form of fixed point problems. Basic examples include differential equations and functional (Lagrange) inversion in power series rings. When analyzed in terms of combinatorial Hopf algebras, the simplest examples yield interesting algebraic identities or enumerative results.
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2007.09.005