Improving maximum margin matrix factorization

Collaborative filtering is a popular method for personalizing product recommendations. Maximum Margin Matrix Factorization (MMMF) has been proposed as one successful learning approach to this task and has been recently extended to structured ranking losses. In this paper we discuss a number of exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2008-09, Vol.72 (3), p.263-276
Hauptverfasser: Weimer, Markus, Karatzoglou, Alexandros, Smola, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Collaborative filtering is a popular method for personalizing product recommendations. Maximum Margin Matrix Factorization (MMMF) has been proposed as one successful learning approach to this task and has been recently extended to structured ranking losses. In this paper we discuss a number of extensions to MMMF by introducing offset terms, item dependent regularization and a graph kernel on the recommender graph. We show equivalence between graph kernels and the recent MMMF extensions by Mnih and Salakhutdinov (Advances in Neural Information Processing Systems 20, 2008 ). Experimental evaluation of the introduced extensions show improved performance over the original MMMF formulation.
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-008-5073-7