Indirect recruitment of the signalling adaptor Shc to the fibroblast growth factor receptor 2 (FGFR2)

The adaptor protein Shc (Src homology and collagen-containing protein) plays an important role in the activation of signalling pathways downstream of RTKs (receptor tyrosine kinases) regulating diverse cellular functions, such as differentiation, adhesion, migration and mitogenesis. Despite being ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2008-12, Vol.416 (2), p.189-199
Hauptverfasser: Schüller, Annika C, Ahmed, Zamal, Levitt, James A, Suen, Kin M, Suhling, Klaus, Ladbury, John E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adaptor protein Shc (Src homology and collagen-containing protein) plays an important role in the activation of signalling pathways downstream of RTKs (receptor tyrosine kinases) regulating diverse cellular functions, such as differentiation, adhesion, migration and mitogenesis. Despite being phosphorylated downstream of members of the FGFR (fibroblast growth factor receptor) family, a direct interaction of Shc with this receptor family has not been described to date. Various studies have suggested potential binding sites for the Shc PTB domain (phosphotyrosine-binding domain) and/or the SH2 (Src homology 2) domain on FGFR1, but no interaction of full-length Shc with these sites has been reported in vivo. In the present study, we investigated the importance of the SH2 domain and the PTB domain in recruitment of Shc to FGFR2(IIIc) to characterize the interaction of these two proteins. Confocal microscopy revealed extensive co-localization of Shc with FGFR2. The PTB domain was identified as the critical component of Shc which mediates membrane localization. Results from FLIM (fluorescence lifetime imaging microscopy) revealed that the interaction between Shc and FGFR2 is indirect, suggesting that the adaptor protein forms part of a signalling complex containing the receptor. We identified the non-RTK Src as a protein which potentially mediates the formation of such a ternary complex. Although an interaction between Src and Shc has been described previously, in the present study we implicate the Shc SH2 domain as a novel mediator of this association. The recruitment of Shc to FGFR2 via an indirect mechanism provides new insight into the regulation of protein assembly and activation of various signalling pathways downstream of this RTK.
ISSN:0264-6021
1470-8728
DOI:10.1042/BJ20080887