Asymptotic behavior of some factorizations of random words

In this paper, we consider the normalized lengths of the factors of some factorizations of random words. First, for the Lyndon factorization of finite random words with n independent letters drawn from a finite or infinite totally ordered alphabet according to a general probability distribution, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2022-10, Vol.61 (3), p.543-572
Hauptverfasser: Zohoorian Azad, Elahe, Chassaing, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the normalized lengths of the factors of some factorizations of random words. First, for the Lyndon factorization of finite random words with n independent letters drawn from a finite or infinite totally ordered alphabet according to a general probability distribution, we prove that the limit law of the normalized lengths of the smallest Lyndon factors is a variant of the stickbreaking process. Convergence of the distribution of the lengths of the longest factors to a Poisson–Dirichlet distribution follows. Second, we consider the standard factorization of random Lyndon word: we prove that the distribution of the normalized length of the standard right factor of a random n‐letters long Lyndon word, derived from such an alphabet, converges, when n is large, to: μ(dx)=p1δ1(dx)+(1−p1)1[0,1)(x)dx,$$ \mu (dx)={p}_1{\delta}_1(dx)+\left(1-{p}_1\right){\mathbf{1}}_{\left[0,1\right)}(x) dx, $$ in which p1$$ {p}_1 $$ denotes the probability of the smallest letter of the alphabet.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.21073