On cusp estimation of ergodic diffusion process

The properties of the maximum-likelihood (MLE) and Bayesian (BE) estimators of the parameter of ergodic diffusion process are studied in the situation when the trend coefficient has a cusp, i.e., it admits the representation S( ϑ, x)= d( x− ϑ)| x− ϑ| p + h( x− ϑ), where p∈(0, 1 2 ) , d( x)= a for x0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical planning and inference 2003-11, Vol.117 (1), p.153-166
Hauptverfasser: Dachian, Sergueı&#x0308, Kutoyants, Yury A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The properties of the maximum-likelihood (MLE) and Bayesian (BE) estimators of the parameter of ergodic diffusion process are studied in the situation when the trend coefficient has a cusp, i.e., it admits the representation S( ϑ, x)= d( x− ϑ)| x− ϑ| p + h( x− ϑ), where p∈(0, 1 2 ) , d( x)= a for x0, and the function h(·) is regular. This problem of estimation is not regular (Fisher information is equal to infinity), and it is shown that the rate of convergence of the estimators is T 1/(2 p+1) , the estimators MLE and BE have different limit laws, and the BE is asymptotically optimal.
ISSN:0378-3758
1873-1171
DOI:10.1016/S0378-3758(02)00365-8