Tenascin-X increases the stiffness of collagen gels without affecting fibrillogenesis
Tenascin-X is an extracellular matrix protein whose absence leads to an Ehlers-Danlos Syndrome in humans, mainly characterised by connective tissue defects including the disorganisation of fibrillar networks, a reduced collagen deposition, and modifications in the mechanical properties of dense tiss...
Gespeichert in:
Veröffentlicht in: | Biophysical chemistry 2010-03, Vol.147 (1), p.87-91 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tenascin-X is an extracellular matrix protein whose absence leads to an Ehlers-Danlos Syndrome in humans, mainly characterised by connective tissue defects including the disorganisation of fibrillar networks, a reduced collagen deposition, and modifications in the mechanical properties of dense tissues. Here we tested the effect of tenascin-X on
in vitro collagen fibril formation. We observed that the main parameters of fibrillogenesis were unchanged, and that the diameter of fibrils was not significantly different when they were formed in the presence of tenascin-X. Interestingly, mechanical analysis of collagen gels showed an increased compressive resistance of the gels containing tenascin-X, indicating that this protein might be directly involved in determining the mechanical properties of collagen-rich tissues
in vivo. |
---|---|
ISSN: | 0301-4622 1873-4200 |
DOI: | 10.1016/j.bpc.2009.12.011 |