Differences between Bond Lengths in Biogenic and Geological Calcite

We used high-resolution neutron powder diffraction to accurately measure the atomic positions and bond lengths in biogenic and geological calcite. A special procedure for data analysis was developed in order to take into account the considerable amounts of magnesium present in all the investigated s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2010-03, Vol.10 (3), p.1207-1214
Hauptverfasser: Zolotoyabko, E, Caspi, E. N, Fieramosca, J. S, Von Dreele, R. B, Marin, F, Mor, G, Addadi, L, Weiner, S, Politi, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We used high-resolution neutron powder diffraction to accurately measure the atomic positions and bond lengths in biogenic and geological calcite. A special procedure for data analysis was developed in order to take into account the considerable amounts of magnesium present in all the investigated samples. As a result, in biogenic calcite we found some atomic bonds to have significantly different lengths as compared to those in geological calcite, after the contribution of magnesium is accounted for. The maximum effect (elongation up to 0.7%) was found for the C−O bonds. We also analyzed changes in frequencies and spectral widths of normal vibrations of carbonate groups in biogenic calcite (as compared to geological calcite) measured by Raman and Fourier transform IR techniques. Surprisingly, the frequency shifts after subtracting the magnesium contribution are close to zero. At the same time, substantial spectral broadening (up to 1.2%) in biogenic calcite as compared to geological samples was detected. Possible explanations for the experimental findings are discussed.
ISSN:1528-7483
1528-7505
DOI:10.1021/cg901195t