Hopf monads on monoidal categories

We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2011-06, Vol.227 (2), p.745-800
Hauptverfasser: Bruguières, Alain, Lack, Steve, Virelizier, Alexis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 800
container_issue 2
container_start_page 745
container_title Advances in mathematics (New York. 1965)
container_volume 227
creator Bruguières, Alain
Lack, Steve
Virelizier, Alexis
description We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf adjunctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode. Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids (which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any finite tensor category is the category of finite-dimensional modules over a Hopf algebroid. Any Hopf algebra in the center of a monoidal category C gives rise to a Hopf monad on C . The Hopf monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad T is a retract of a Hopf monad P, then P is a cross product of T by a Hopf algebra of the center of the category of T-modules (generalizing the Radford–Majid bosonization of Hopf algebras). We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommutative central coalgebra. As a corollary, we obtain an extension of Sweedlerʼs Hopf module decomposition theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad).
doi_str_mv 10.1016/j.aim.2011.02.008
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00463039v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0001870811000582</els_id><sourcerecordid>oai_HAL_hal_00463039v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-1bb97b1bc46598c9aefa267dfef0162333efd0e4adaf2816255e9412ea3f0b643</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_wFvx5mHXSbLdTfBUirpCwYuew2wy0ZS2KUkp-O_NUvHoaWYe7xtmHmO3HGoOvH1Y1xi2tQDOaxA1gDpjEw4aKgFKnLMJAPBKdaAu2VXO6zLqhusJu-vj3s-2cYcuz-Ju7GJwuJlZPNBnTIHyNbvwuMl081un7OP56X3ZV6u3l9flYlVZ2TWHig-D7gY-2Kada2U1kkfRds6TLwcKKSV5B9SgQy9UUeZzKjcIQulhaBs5ZfenvV-4MfsUtpi-TcRg-sXKjBpA00qQ-siLl5-8NsWcE_k_gIMZAzFrUwIxYyAGREFVYR5PDJUnjoGSyTbQzpILiezBuBj-oX8AZpxmzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hopf monads on monoidal categories</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bruguières, Alain ; Lack, Steve ; Virelizier, Alexis</creator><creatorcontrib>Bruguières, Alain ; Lack, Steve ; Virelizier, Alexis</creatorcontrib><description>We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf adjunctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode. Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids (which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any finite tensor category is the category of finite-dimensional modules over a Hopf algebroid. Any Hopf algebra in the center of a monoidal category C gives rise to a Hopf monad on C . The Hopf monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad T is a retract of a Hopf monad P, then P is a cross product of T by a Hopf algebra of the center of the category of T-modules (generalizing the Radford–Majid bosonization of Hopf algebras). We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommutative central coalgebra. As a corollary, we obtain an extension of Sweedlerʼs Hopf module decomposition theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad).</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2011.02.008</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Category Theory ; Cross products ; Hopf algebras ; Hopf algebroids ; Hopf monads ; Mathematics ; Monoidal categories ; Quantum Algebra</subject><ispartof>Advances in mathematics (New York. 1965), 2011-06, Vol.227 (2), p.745-800</ispartof><rights>2011 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-1bb97b1bc46598c9aefa267dfef0162333efd0e4adaf2816255e9412ea3f0b643</citedby><cites>FETCH-LOGICAL-c374t-1bb97b1bc46598c9aefa267dfef0162333efd0e4adaf2816255e9412ea3f0b643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0001870811000582$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00463039$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruguières, Alain</creatorcontrib><creatorcontrib>Lack, Steve</creatorcontrib><creatorcontrib>Virelizier, Alexis</creatorcontrib><title>Hopf monads on monoidal categories</title><title>Advances in mathematics (New York. 1965)</title><description>We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf adjunctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode. Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids (which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any finite tensor category is the category of finite-dimensional modules over a Hopf algebroid. Any Hopf algebra in the center of a monoidal category C gives rise to a Hopf monad on C . The Hopf monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad T is a retract of a Hopf monad P, then P is a cross product of T by a Hopf algebra of the center of the category of T-modules (generalizing the Radford–Majid bosonization of Hopf algebras). We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommutative central coalgebra. As a corollary, we obtain an extension of Sweedlerʼs Hopf module decomposition theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad).</description><subject>Category Theory</subject><subject>Cross products</subject><subject>Hopf algebras</subject><subject>Hopf algebroids</subject><subject>Hopf monads</subject><subject>Mathematics</subject><subject>Monoidal categories</subject><subject>Quantum Algebra</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_wFvx5mHXSbLdTfBUirpCwYuew2wy0ZS2KUkp-O_NUvHoaWYe7xtmHmO3HGoOvH1Y1xi2tQDOaxA1gDpjEw4aKgFKnLMJAPBKdaAu2VXO6zLqhusJu-vj3s-2cYcuz-Ju7GJwuJlZPNBnTIHyNbvwuMl081un7OP56X3ZV6u3l9flYlVZ2TWHig-D7gY-2Kada2U1kkfRds6TLwcKKSV5B9SgQy9UUeZzKjcIQulhaBs5ZfenvV-4MfsUtpi-TcRg-sXKjBpA00qQ-siLl5-8NsWcE_k_gIMZAzFrUwIxYyAGREFVYR5PDJUnjoGSyTbQzpILiezBuBj-oX8AZpxmzw</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Bruguières, Alain</creator><creator>Lack, Steve</creator><creator>Virelizier, Alexis</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20110601</creationdate><title>Hopf monads on monoidal categories</title><author>Bruguières, Alain ; Lack, Steve ; Virelizier, Alexis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-1bb97b1bc46598c9aefa267dfef0162333efd0e4adaf2816255e9412ea3f0b643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Category Theory</topic><topic>Cross products</topic><topic>Hopf algebras</topic><topic>Hopf algebroids</topic><topic>Hopf monads</topic><topic>Mathematics</topic><topic>Monoidal categories</topic><topic>Quantum Algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruguières, Alain</creatorcontrib><creatorcontrib>Lack, Steve</creatorcontrib><creatorcontrib>Virelizier, Alexis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruguières, Alain</au><au>Lack, Steve</au><au>Virelizier, Alexis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hopf monads on monoidal categories</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>227</volume><issue>2</issue><spage>745</spage><epage>800</epage><pages>745-800</pages><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf adjunctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode. Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids (which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any finite tensor category is the category of finite-dimensional modules over a Hopf algebroid. Any Hopf algebra in the center of a monoidal category C gives rise to a Hopf monad on C . The Hopf monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad T is a retract of a Hopf monad P, then P is a cross product of T by a Hopf algebra of the center of the category of T-modules (generalizing the Radford–Majid bosonization of Hopf algebras). We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommutative central coalgebra. As a corollary, we obtain an extension of Sweedlerʼs Hopf module decomposition theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad).</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.aim.2011.02.008</doi><tpages>56</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-8708
ispartof Advances in mathematics (New York. 1965), 2011-06, Vol.227 (2), p.745-800
issn 0001-8708
1090-2082
language eng
recordid cdi_hal_primary_oai_HAL_hal_00463039v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Category Theory
Cross products
Hopf algebras
Hopf algebroids
Hopf monads
Mathematics
Monoidal categories
Quantum Algebra
title Hopf monads on monoidal categories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hopf%20monads%20on%20monoidal%20categories&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Brugui%C3%A8res,%20Alain&rft.date=2011-06-01&rft.volume=227&rft.issue=2&rft.spage=745&rft.epage=800&rft.pages=745-800&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2011.02.008&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00463039v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0001870811000582&rfr_iscdi=true