Hopf monads on monoidal categories

We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2011-06, Vol.227 (2), p.745-800
Hauptverfasser: Bruguières, Alain, Lack, Steve, Virelizier, Alexis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf adjunctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode. Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids (which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any finite tensor category is the category of finite-dimensional modules over a Hopf algebroid. Any Hopf algebra in the center of a monoidal category C gives rise to a Hopf monad on C . The Hopf monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad T is a retract of a Hopf monad P, then P is a cross product of T by a Hopf algebra of the center of the category of T-modules (generalizing the Radford–Majid bosonization of Hopf algebras). We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommutative central coalgebra. As a corollary, we obtain an extension of Sweedlerʼs Hopf module decomposition theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad).
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2011.02.008