Hopf monads on monoidal categories
We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hop...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2011-06, Vol.227 (2), p.745-800 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007)
[5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf adjunctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode.
Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids (which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any finite tensor category is the category of finite-dimensional modules over a Hopf algebroid.
Any Hopf algebra in the center of a monoidal category
C
gives rise to a Hopf monad on
C
. The Hopf monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad
T is a retract of a Hopf monad
P, then
P is a cross product of
T by a Hopf algebra of the center of the category of
T-modules (generalizing the Radford–Majid bosonization of Hopf algebras).
We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommutative central coalgebra. As a corollary, we obtain an extension of Sweedlerʼs Hopf module decomposition theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad). |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2011.02.008 |