Efficient algorithms for Roman domination on some classes of graphs

A Roman dominating function of a graph G = ( V , E ) is a function f : V → { 0 , 1 , 2 } such that every vertex x with f ( x ) = 0 is adjacent to at least one vertex y with f ( y ) = 2 . The weight of a Roman dominating function is defined to be f ( V ) = ∑ x ∈ V f ( x ) , and the minimum weight of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2008-11, Vol.156 (18), p.3400-3415
Hauptverfasser: Liedloff, Mathieu, Kloks, Ton, Liu, Jiping, Peng, Sheng-Lung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Roman dominating function of a graph G = ( V , E ) is a function f : V → { 0 , 1 , 2 } such that every vertex x with f ( x ) = 0 is adjacent to at least one vertex y with f ( y ) = 2 . The weight of a Roman dominating function is defined to be f ( V ) = ∑ x ∈ V f ( x ) , and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G . In this paper we first answer an open question mentioned in [E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22] by showing that the Roman domination number of an interval graph can be computed in linear time. We then show that the Roman domination number of a cograph (and a graph with bounded cliquewidth) can be computed in linear time. As a by-product, we give a characterization of Roman cographs. It leads to a linear-time algorithm for recognizing Roman cographs. Finally, we show that there are polynomial-time algorithms for computing the Roman domination numbers of AT -free graphs and graphs with a d -octopus.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2008.01.011