Impact d'une galerie étanche peu profonde sur l'écoulement d'une nappe/Impact of an impervious shallow gallery on groundwater flow
While many studies have been achieved on the interactions between groundwater and deep tunnels, in order to identify the evolution of pore pressure around the structure and to characterize the flow to its leaky parts, few studies have dealt with the impact of the carrying out of an impervious galler...
Gespeichert in:
Veröffentlicht in: | Bulletin of engineering geology and the environment 2009-07, Vol.69 (1), p.143-152 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While many studies have been achieved on the interactions between groundwater and deep tunnels, in order to identify the evolution of pore pressure around the structure and to characterize the flow to its leaky parts, few studies have dealt with the impact of the carrying out of an impervious gallery in a shallow aquifer. The induced change in the piezometric level of the aquifer and the one in the hydraulic gradient of the flow however can, in this case, have significant consequences, in particular when the linear structure is located in an urban environment. This paper investigates, in steady state, the case of a straight tunnel having a horizontal axis perpendicular to the direction of the regional groundwater flow and a circular or square cross section. The aim is to determine the additional lost head Δh s due to the tunnel (i.e. additional to that resulting from the regional flow, supposed to be uniform with a hydraulic gradient i 0). In the context of a horizontal confined aquifer having a thickness 2B and of a tunnel of radius R located in the middle part of the aquifer, an analogy can be established with the flow above a hydraulic threshold resulting from a local rise of the elevation of the base of an aquifer, having a thickness B, on a width 2R and with a vertical maximum amplitude R. When neglecting the vertical component of the hydraulic gradient compared to its horizontal component, analytical solutions are developed for various hydraulic threshold shapes (rectangular, triangular and circular), based on the equivalence with a local change in the transmissivity of an aquifer keeping a constant thickness. The corresponding formulas take the form: $$ {\frac{{\Updelta h_{s} - \Updelta h_{0} }}{{\Updelta h_{0} }}} = f(a) $$, with $$ a = {\frac{R}{B}} $$ and Δh 0 = 2Ri 0. The use of these formulas shows that the additional lost head Δh s due to the hydraulic threshold is proportional to i 0 and that, for values of the ratio a < 0.5, the change in the piezometric surface is small. These conclusions are therefore limited by the fact that the vertical conductivity is supposed to be very large. In order to remove this hypothesis, numerical simulations are achieved using the MODFLOW code. It is considered a confined aquifer of length 2L = 110 m and thickness B = 10 m, a ratio $$ a = {\frac{R}{B}} = 0.25 $$ and a horizontal hydraulic conductivity $$ K_{H} = 10^{ - 5} \,{\text{m}}\,{\text{s}}^{ - 1} $$. In the case of an isotropic medium ($$ \alpha = {\fra |
---|---|
ISSN: | 1435-9529 1435-9537 |
DOI: | 10.1007/s10064-009-0226-x |