Arrest of Langmuir wave collapse by quantum effects

The arrest of Langmuir wave collapse by quantum effects, first addressed by Haas and Shukla [Phys. Rev. E 79, 066402 (2009)] using a Rayleigh-Ritz trial function method is revisited, using rigorous estimates and systematic asymptotic expansions. The absence of blow up for the so-called quantum Zakha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-11, Vol.80 (5 Pt 2), p.056405-056405, Article 056405
Hauptverfasser: Simpson, G, Sulem, C, Sulem, P L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The arrest of Langmuir wave collapse by quantum effects, first addressed by Haas and Shukla [Phys. Rev. E 79, 066402 (2009)] using a Rayleigh-Ritz trial function method is revisited, using rigorous estimates and systematic asymptotic expansions. The absence of blow up for the so-called quantum Zakharov equations is proved in two and three dimensions, whatever the strength of the quantum effects. The time-periodic behavior of the solution for initial conditions slightly in excess of the singularity threshold for the classical problem is established for various settings in two space dimensions. The difficulty of developing a consistent perturbative approach in three dimensions is also discussed and a semiphenomenological model is suggested for this case.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.80.056405