Arrest of Langmuir wave collapse by quantum effects
The arrest of Langmuir wave collapse by quantum effects, first addressed by Haas and Shukla [Phys. Rev. E 79, 066402 (2009)] using a Rayleigh-Ritz trial function method is revisited, using rigorous estimates and systematic asymptotic expansions. The absence of blow up for the so-called quantum Zakha...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-11, Vol.80 (5 Pt 2), p.056405-056405, Article 056405 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The arrest of Langmuir wave collapse by quantum effects, first addressed by Haas and Shukla [Phys. Rev. E 79, 066402 (2009)] using a Rayleigh-Ritz trial function method is revisited, using rigorous estimates and systematic asymptotic expansions. The absence of blow up for the so-called quantum Zakharov equations is proved in two and three dimensions, whatever the strength of the quantum effects. The time-periodic behavior of the solution for initial conditions slightly in excess of the singularity threshold for the classical problem is established for various settings in two space dimensions. The difficulty of developing a consistent perturbative approach in three dimensions is also discussed and a semiphenomenological model is suggested for this case. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.80.056405 |