Hybrid genetic algorithm for dual selection

In this paper, a hybrid genetic approach is proposed to solve the problem of designing a subdatabase of the original one with the highest classification performances, the lowest number of features and the highest number of patterns. The method can simultaneously treat the double problem of editing i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern analysis and applications : PAA 2008-06, Vol.11 (2), p.179-198
Hauptverfasser: Ros, Frederic, Guillaume, Serge, Pintore, Marco, Chrétien, Jacques R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a hybrid genetic approach is proposed to solve the problem of designing a subdatabase of the original one with the highest classification performances, the lowest number of features and the highest number of patterns. The method can simultaneously treat the double problem of editing instance patterns and selecting features as a single optimization problem, and therefore aims at providing a better level of information. The search is optimized by dividing the algorithm into self-controlled phases managed by a combination of pure genetic process and dedicated local approaches. Different heuristics such as an adapted chromosome structure and evolutionary memory are introduced to promote diversity and elitism in the genetic population. They particularly facilitate the resolution of real applications in the chemometric field presenting databases with large feature sizes and medium cardinalities. The study focuses on the double objective of enhancing the reliability of results while reducing the time consumed by combining genetic exploration and a local approach in such a way that excessive computational CPU costs are avoided. The usefulness of the method is demonstrated with artificial and real data and its performance is compared to other approaches.
ISSN:1433-7541
1433-755X
DOI:10.1007/s10044-007-0089-3