An evidence-based approach to damage location on an aircraft structure
This paper discusses the use of evidence-based classifiers for the identification of damage. In particular, a neural network approach to Dempster–Shafer theory is demonstrated on the damage location problem for an aircraft wing. The results are compared with a probabilistic classifier based on a mul...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2009-08, Vol.23 (6), p.1792-1804 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper discusses the use of evidence-based classifiers for the identification of damage. In particular, a neural network approach to Dempster–Shafer theory is demonstrated on the damage location problem for an aircraft wing. The results are compared with a probabilistic classifier based on a multi-layer perceptron (MLP) neural network and shown to give similar results. The question of fusing classifiers is considered and it is shown that a combination of the Dempster–Shafer and MLP classifiers gives a significant improvement over the use of individual classifiers for the aircraft wing data. |
---|---|
ISSN: | 0888-3270 1096-1216 |
DOI: | 10.1016/j.ymssp.2008.11.003 |