Bionanocomposites based on poly(E-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization

A 'grafting from' approach was used to graft poly(epsilon-caprolactone) (PCL) polymers to cellulose nanocrystals by Sn(Oct)2-catalyzed ring-opening polymerization (ROP). The grafting efficiency was evidenced by the long-term stability of suspension of PCL-grafted cellulose nanocrystals in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry 2008-01, Vol.18 (41), p.5002-5010
Hauptverfasser: HABIBI, Youssef, GOFFIN, Anne-Lise, SCHILTZ, Nancy, DUQUESNE, Emmanuel, DUBOIS, Philippe, DUFRESNE, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 'grafting from' approach was used to graft poly(epsilon-caprolactone) (PCL) polymers to cellulose nanocrystals by Sn(Oct)2-catalyzed ring-opening polymerization (ROP). The grafting efficiency was evidenced by the long-term stability of suspension of PCL-grafted cellulose nanocrystals in toluene. These observations were confirmed by Fourier Transform Infrared Spectroscopy (FT-IR) and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). Extracted nanohybrids were characterized by Differential Scanning Calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The morphology and crystalline structure of the PCL-grafted cellulose nanocrystals was examined by transmission electron microscopy (TEM) and X-Ray diffraction, respectively. Results showed that cellulose nanocrystals kept their initial morphological integrity and their native crystallinity. Nanocomposites with high content of cellulose nanocrystals were prepared using either neat cellulose nanocrystals or PCL-grafted cellulose nanocrystals and high molecular weight PCL as matrix using a casting/evaporation technique. Thermo-mechanical properties of processed nanocomposites were studied by DSC, dynamical mechanical analyses (DMA) and tensile tests. A significant improvement in terms of Young's modulus and storage modulus was obtained.
ISSN:0959-9428
1364-5501
DOI:10.1039/b809212e