Identification of nonlinear systems with time-varying parameters using a sliding-neural network observer

In this paper, a new method for the identification of nonlinear systems with time-varying parameters using a sliding-neural network observer is investigated. The proof of the finite-time convergence of the estimates to their true values is achieved using Lyapunov arguments and sliding mode theories....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2009-03, Vol.72 (7), p.1611-1620
Hauptverfasser: Ahmed-Ali, Tarek, Kenné, Godpromesse, Lamnabhi-Lagarrigue, Françoise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new method for the identification of nonlinear systems with time-varying parameters using a sliding-neural network observer is investigated. The proof of the finite-time convergence of the estimates to their true values is achieved using Lyapunov arguments and sliding mode theories. An application example illustrated the effectiveness of the approach and the obtained results show high convergence rate and very satisfactory parameter estimation accuracy. The computing results under noisy condition also demonstrate that good state and parameter estimation can be achieved despite the disturbance (noise) in the system. The reduced number of hidden units and the small transient period demonstrate that the proposed method can be easily implementable in real-time.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2008.09.001