Spectral Simplicity and Asymptotic Separation of Variables

We describe a method for comparing the spectra of two real-analytic families, ( a t ) and ( q t ), of quadratic forms that both degenerate as a positive parameter t tends to zero. We suppose that the family ( a t ) is amenable to ‘separation of variables’ and that each eigenspace of a t is 1-dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2011, Vol.302 (2), p.291-344
Hauptverfasser: Hillairet, Luc, Judge, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 2
container_start_page 291
container_title Communications in mathematical physics
container_volume 302
creator Hillairet, Luc
Judge, Chris
description We describe a method for comparing the spectra of two real-analytic families, ( a t ) and ( q t ), of quadratic forms that both degenerate as a positive parameter t tends to zero. We suppose that the family ( a t ) is amenable to ‘separation of variables’ and that each eigenspace of a t is 1-dimensional for some t . We show that if ( q t ) is asymptotic to ( a t ) at first order as t → 0, then the eigenspaces of ( q t ) are also 1-dimensional for all but countably many t . As an application, we prove that for the generic triangle (simplex) in Euclidean space (constant curvature space form) each eigenspace of the Laplacian acting on Dirichlet functions is 1-dimensional.
doi_str_mv 10.1007/s00220-010-1185-6
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00445680v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00445680v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ed248b8474b0fcf3ae81c9f18cb5880b778c1f5fddf3044aa038f8cf15f58c663</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9iyMDAE7uzEcdmqCihSJYYCq3VxbHCVJpEdkPrvSRTUkel09773pHuMXSPcIUBxHwE4hxQQUkSVp_KEzTATPIUFylM2g1EREuU5u4hxBwALLuWMPWw7a_pAdbL1-672xveHhJoqWcbDvuvb3ptkazsK1Pu2SVqXfFDwVNY2XrIzR3W0V39zzt6fHt9W63Tz-vyyWm5SI3Lep7bimSpVVmQlOOMEWYVm4VCZMlcKyqJQBl3uqsoJyDIiEMop4zB3uTJSijm7nXK_qNZd8HsKB92S1-vlRo83GGy5VPCDA4sTa0IbY7DuaEDQY1F6KkrDuA9F6TH_ZvJ0FA3VLlBjfDwauVAyE4UaOD5xcZCaTxv0rv0OzfD6P-G_ipZ3TQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectral Simplicity and Asymptotic Separation of Variables</title><source>Springer Nature Link eJournals</source><creator>Hillairet, Luc ; Judge, Chris</creator><creatorcontrib>Hillairet, Luc ; Judge, Chris</creatorcontrib><description>We describe a method for comparing the spectra of two real-analytic families, ( a t ) and ( q t ), of quadratic forms that both degenerate as a positive parameter t tends to zero. We suppose that the family ( a t ) is amenable to ‘separation of variables’ and that each eigenspace of a t is 1-dimensional for some t . We show that if ( q t ) is asymptotic to ( a t ) at first order as t → 0, then the eigenspaces of ( q t ) are also 1-dimensional for all but countably many t . As an application, we prove that for the generic triangle (simplex) in Euclidean space (constant curvature space form) each eigenspace of the Laplacian acting on Dirichlet functions is 1-dimensional.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-010-1185-6</identifier><identifier>CODEN: CMPHAY</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algebra ; Analysis of PDEs ; Classical and Quantum Gravitation ; Complex Systems ; Differential geometry ; Exact sciences and technology ; Geometry ; Mathematical and Computational Physics ; Mathematical methods in physics ; Mathematical Physics ; Mathematics ; Number theory ; Other topics in mathematical methods in physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Sciences and techniques of general use ; Spectral Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2011, Vol.302 (2), p.291-344</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ed248b8474b0fcf3ae81c9f18cb5880b778c1f5fddf3044aa038f8cf15f58c663</citedby><cites>FETCH-LOGICAL-c352t-ed248b8474b0fcf3ae81c9f18cb5880b778c1f5fddf3044aa038f8cf15f58c663</cites><orcidid>0009-0009-6010-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-010-1185-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-010-1185-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23864378$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00445680$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hillairet, Luc</creatorcontrib><creatorcontrib>Judge, Chris</creatorcontrib><title>Spectral Simplicity and Asymptotic Separation of Variables</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We describe a method for comparing the spectra of two real-analytic families, ( a t ) and ( q t ), of quadratic forms that both degenerate as a positive parameter t tends to zero. We suppose that the family ( a t ) is amenable to ‘separation of variables’ and that each eigenspace of a t is 1-dimensional for some t . We show that if ( q t ) is asymptotic to ( a t ) at first order as t → 0, then the eigenspaces of ( q t ) are also 1-dimensional for all but countably many t . As an application, we prove that for the generic triangle (simplex) in Euclidean space (constant curvature space form) each eigenspace of the Laplacian acting on Dirichlet functions is 1-dimensional.</description><subject>Algebra</subject><subject>Analysis of PDEs</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Differential geometry</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical methods in physics</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Other topics in mathematical methods in physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Sciences and techniques of general use</subject><subject>Spectral Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9iyMDAE7uzEcdmqCihSJYYCq3VxbHCVJpEdkPrvSRTUkel09773pHuMXSPcIUBxHwE4hxQQUkSVp_KEzTATPIUFylM2g1EREuU5u4hxBwALLuWMPWw7a_pAdbL1-672xveHhJoqWcbDvuvb3ptkazsK1Pu2SVqXfFDwVNY2XrIzR3W0V39zzt6fHt9W63Tz-vyyWm5SI3Lep7bimSpVVmQlOOMEWYVm4VCZMlcKyqJQBl3uqsoJyDIiEMop4zB3uTJSijm7nXK_qNZd8HsKB92S1-vlRo83GGy5VPCDA4sTa0IbY7DuaEDQY1F6KkrDuA9F6TH_ZvJ0FA3VLlBjfDwauVAyE4UaOD5xcZCaTxv0rv0OzfD6P-G_ipZ3TQ</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Hillairet, Luc</creator><creator>Judge, Chris</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0009-6010-151X</orcidid></search><sort><creationdate>2011</creationdate><title>Spectral Simplicity and Asymptotic Separation of Variables</title><author>Hillairet, Luc ; Judge, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ed248b8474b0fcf3ae81c9f18cb5880b778c1f5fddf3044aa038f8cf15f58c663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Analysis of PDEs</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Differential geometry</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical methods in physics</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Other topics in mathematical methods in physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Sciences and techniques of general use</topic><topic>Spectral Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillairet, Luc</creatorcontrib><creatorcontrib>Judge, Chris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hillairet, Luc</au><au>Judge, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Simplicity and Asymptotic Separation of Variables</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2011</date><risdate>2011</risdate><volume>302</volume><issue>2</issue><spage>291</spage><epage>344</epage><pages>291-344</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><coden>CMPHAY</coden><abstract>We describe a method for comparing the spectra of two real-analytic families, ( a t ) and ( q t ), of quadratic forms that both degenerate as a positive parameter t tends to zero. We suppose that the family ( a t ) is amenable to ‘separation of variables’ and that each eigenspace of a t is 1-dimensional for some t . We show that if ( q t ) is asymptotic to ( a t ) at first order as t → 0, then the eigenspaces of ( q t ) are also 1-dimensional for all but countably many t . As an application, we prove that for the generic triangle (simplex) in Euclidean space (constant curvature space form) each eigenspace of the Laplacian acting on Dirichlet functions is 1-dimensional.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00220-010-1185-6</doi><tpages>54</tpages><orcidid>https://orcid.org/0009-0009-6010-151X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2011, Vol.302 (2), p.291-344
issn 0010-3616
1432-0916
language eng
recordid cdi_hal_primary_oai_HAL_hal_00445680v1
source Springer Nature Link eJournals
subjects Algebra
Analysis of PDEs
Classical and Quantum Gravitation
Complex Systems
Differential geometry
Exact sciences and technology
Geometry
Mathematical and Computational Physics
Mathematical methods in physics
Mathematical Physics
Mathematics
Number theory
Other topics in mathematical methods in physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Sciences and techniques of general use
Spectral Theory
Theoretical
title Spectral Simplicity and Asymptotic Separation of Variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Simplicity%20and%20Asymptotic%20Separation%20of%20Variables&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Hillairet,%20Luc&rft.date=2011&rft.volume=302&rft.issue=2&rft.spage=291&rft.epage=344&rft.pages=291-344&rft.issn=0010-3616&rft.eissn=1432-0916&rft.coden=CMPHAY&rft_id=info:doi/10.1007/s00220-010-1185-6&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00445680v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true