Spectral Simplicity and Asymptotic Separation of Variables

We describe a method for comparing the spectra of two real-analytic families, ( a t ) and ( q t ), of quadratic forms that both degenerate as a positive parameter t tends to zero. We suppose that the family ( a t ) is amenable to ‘separation of variables’ and that each eigenspace of a t is 1-dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2011, Vol.302 (2), p.291-344
Hauptverfasser: Hillairet, Luc, Judge, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a method for comparing the spectra of two real-analytic families, ( a t ) and ( q t ), of quadratic forms that both degenerate as a positive parameter t tends to zero. We suppose that the family ( a t ) is amenable to ‘separation of variables’ and that each eigenspace of a t is 1-dimensional for some t . We show that if ( q t ) is asymptotic to ( a t ) at first order as t → 0, then the eigenspaces of ( q t ) are also 1-dimensional for all but countably many t . As an application, we prove that for the generic triangle (simplex) in Euclidean space (constant curvature space form) each eigenspace of the Laplacian acting on Dirichlet functions is 1-dimensional.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-010-1185-6