Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry
Thermoacoustic refrigeration systems generate cooling power from a high-amplitude acoustic standing wave. There has recently been a growing interest in this technology because of its simple and robust architecture and its use of environmentally safe gases. With the prospect of commercialization, it...
Gespeichert in:
Veröffentlicht in: | Heat and mass transfer 2008-06, Vol.44 (8), p.1015-1023 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermoacoustic refrigeration systems generate cooling power from a high-amplitude acoustic standing wave. There has recently been a growing interest in this technology because of its simple and robust architecture and its use of environmentally safe gases. With the prospect of commercialization, it is necessary to enhance the efficiency of thermoacoustic cooling systems and more particularly of some of their components such as the heat exchangers. The characterization of the flow field at the end of the stack plates is a crucial step for the understanding and optimization of heat transfer between the stack and the heat exchangers. In this study, a specific particle image velocimetry measurement is performed inside a thermoacoustic refrigerator. Acoustic velocity is measured using synchronization and phase-averaging. The measurement method is validated inside a void resonator by successfully comparing experimental data with an acoustic plane wave model. Velocity is measured inside the oscillating boundary layers, between the plates of the stack, and compared to a linear model. The flow behind the stack is characterized, and it shows the generation of symmetric pairs of counter-rotating vortices at the end of the stack plates at low acoustic pressure level. As the acoustic pressure level increases, detachment of the vortices and symmetry breaking are observed. |
---|---|
ISSN: | 0947-7411 1432-1181 |
DOI: | 10.1007/s00231-007-0316-x |