On Bayesian estimators in multistage binomial designs

A new class of Bayesian estimators for a proportion in multistage binomial designs is considered. Priors belong to the beta- J distribution family, which is derived from the Fisher information associated with the design. The transposition of the beta parameters of the Haldane and the uniform priors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical planning and inference 2008-12, Vol.138 (12), p.3915-3926
Hauptverfasser: Bunouf, Pierre, Lecoutre, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new class of Bayesian estimators for a proportion in multistage binomial designs is considered. Priors belong to the beta- J distribution family, which is derived from the Fisher information associated with the design. The transposition of the beta parameters of the Haldane and the uniform priors in fixed binomial experiments into the beta- J distribution yields bias-corrected versions of these priors in multistage designs. We show that the estimator of the posterior mean based on the corrected Haldane prior and the estimator of the posterior mode based on the corrected uniform prior have good frequentist properties. An easy-to-use approximation of the estimator of the posterior mode is provided. The new Bayesian estimators are compared to Whitehead's and the uniformly minimum variance estimators through several multistage designs. Last, the bias of the estimator of the posterior mode is derived for a particular case.
ISSN:0378-3758
1873-1171
DOI:10.1016/j.jspi.2008.02.014