Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case

We complete the known results on the local Cauchy problem in Sobolev spaces for the KdV-Burgers equation by proving that this equation is well-posed in $ H^{-1}(\R) $ with a solution-map that is analytic from $H^{-1}(\R) $ to $C([0,T];H^{-1}(\R))$ whereas it is ill-posed in $ H^s(\R) $, as soon as $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annali della Scuola normale superiore di Pisa, Classe di scienze Classe di scienze, 2011-01, Vol.10 (3), p.531-560
Hauptverfasser: Molinet, Luc, Vento, Stéphane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We complete the known results on the local Cauchy problem in Sobolev spaces for the KdV-Burgers equation by proving that this equation is well-posed in $ H^{-1}(\R) $ with a solution-map that is analytic from $H^{-1}(\R) $ to $C([0,T];H^{-1}(\R))$ whereas it is ill-posed in $ H^s(\R) $, as soon as $ s
ISSN:0391-173X
2036-2145
DOI:10.2422/2036-2145.2011.3.02