Assisted self-sustaining combustion reaction in the Fe–Si system: Mechanical and chemical activation

This work presents original investigations carried out to improve the activated self-propagating high-temperature synthesis (SHS) process in the Fe–Si system: different ignition modes are tested (volume heating as opposed to a local ignition source), and the use of additive is considered in order to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2007-05, Vol.456 (1), p.270-277
Hauptverfasser: Gras, Ch, Zink, N., Bernard, F., Gaffet, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents original investigations carried out to improve the activated self-propagating high-temperature synthesis (SHS) process in the Fe–Si system: different ignition modes are tested (volume heating as opposed to a local ignition source), and the use of additive is considered in order to enhance the SHS type reactivity in the Fe–Si system. When 20 wt.% of KNO 3 is added to the reactive mixture, the fast (>20 mm s −1), stable and self-sustaining combustion reaction produces a very fine FeSi + α-FeSi 2 structure. Infrared thermography (IR) as well as post-mortem analysis (SEM, EDXS, XRD) was used to understand the mechanism behind the chemical activation process when KNO 3 was used as an additive.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2006.11.120