An atomic decomposition of the Haj{\l}asz Sobolev space $\Mone$ on manifolds
Several possible notions of Hardy-Sobolev spaces on a Riemannian manifold with a doubling measure are considered. Under the assumption of a Poincaré inequality, the space $\Mone$, defined by Haj{\l}asz, is identified with a Hardy-Sobolev space defined in terms of atoms. Decomposition results are pro...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2010, Vol.259 (6), p.1380-1420 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several possible notions of Hardy-Sobolev spaces on a Riemannian manifold with a doubling measure are considered. Under the assumption of a Poincaré inequality, the space $\Mone$, defined by Haj{\l}asz, is identified with a Hardy-Sobolev space defined in terms of atoms. Decomposition results are proved for both the homogeneous and the nonhomogeneous spaces. |
---|---|
ISSN: | 0022-1236 1096-0783 |