An atomic decomposition of the Haj{\l}asz Sobolev space $\Mone$ on manifolds

Several possible notions of Hardy-Sobolev spaces on a Riemannian manifold with a doubling measure are considered. Under the assumption of a Poincaré inequality, the space $\Mone$, defined by Haj{\l}asz, is identified with a Hardy-Sobolev space defined in terms of atoms. Decomposition results are pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2010, Vol.259 (6), p.1380-1420
Hauptverfasser: Badr, Nadine, Dafni, Galia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several possible notions of Hardy-Sobolev spaces on a Riemannian manifold with a doubling measure are considered. Under the assumption of a Poincaré inequality, the space $\Mone$, defined by Haj{\l}asz, is identified with a Hardy-Sobolev space defined in terms of atoms. Decomposition results are proved for both the homogeneous and the nonhomogeneous spaces.
ISSN:0022-1236
1096-0783