Quasi-duo skew polynomial rings

A characterization of right (left) quasi-duo skew polynomial rings of endomorphism type and skew Laurent polynomial rings are given. In particular, it is shown that (1) the polynomial ring R [ x ] is right quasi-duo iff R [ x ] is commutative modulo its Jacobson radical iff R [ x ] is left quasi-duo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pure and applied algebra 2008-08, Vol.212 (8), p.1951-1959
Hauptverfasser: Leroy, André, Matczuk, Jerzy, Puczyłowski, Edmund R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A characterization of right (left) quasi-duo skew polynomial rings of endomorphism type and skew Laurent polynomial rings are given. In particular, it is shown that (1) the polynomial ring R [ x ] is right quasi-duo iff R [ x ] is commutative modulo its Jacobson radical iff R [ x ] is left quasi-duo, (2) the skew Laurent polynomial ring is right quasi-duo iff it is left quasi-duo. These extend some known results concerning a description of quasi-duo polynomial rings and give a partial answer to the question posed by Lam and Dugas whether right quasi-duo rings are left quasi-duo.
ISSN:0022-4049
1873-1376
DOI:10.1016/j.jpaa.2008.01.002