Quasi-duo skew polynomial rings
A characterization of right (left) quasi-duo skew polynomial rings of endomorphism type and skew Laurent polynomial rings are given. In particular, it is shown that (1) the polynomial ring R [ x ] is right quasi-duo iff R [ x ] is commutative modulo its Jacobson radical iff R [ x ] is left quasi-duo...
Gespeichert in:
Veröffentlicht in: | Journal of pure and applied algebra 2008-08, Vol.212 (8), p.1951-1959 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A characterization of right (left) quasi-duo skew polynomial rings of endomorphism type and skew Laurent polynomial rings are given. In particular, it is shown that (1) the polynomial ring
R
[
x
]
is right quasi-duo iff
R
[
x
]
is commutative modulo its Jacobson radical iff
R
[
x
]
is left quasi-duo, (2) the skew Laurent polynomial ring is right quasi-duo iff it is left quasi-duo. These extend some known results concerning a description of quasi-duo polynomial rings and give a partial answer to the question posed by Lam and Dugas whether right quasi-duo rings are left quasi-duo. |
---|---|
ISSN: | 0022-4049 1873-1376 |
DOI: | 10.1016/j.jpaa.2008.01.002 |