Existence and stability for Fokker–Planck equations with log-concave reference measure

We study Markov processes associated with stochastic differential equations, whose non-linearities are gradients of convex functionals. We prove a general result of existence of such Markov processes and a priori estimates on the transition probabilities. The main result is the following stability p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2009-11, Vol.145 (3-4), p.517-564
Hauptverfasser: Ambrosio, Luigi, Savaré, Giuseppe, Zambotti, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study Markov processes associated with stochastic differential equations, whose non-linearities are gradients of convex functionals. We prove a general result of existence of such Markov processes and a priori estimates on the transition probabilities. The main result is the following stability property: if the associated invariant measures converge weakly, then the Markov processes converge in law. The proofs are based on the interpretation of a Fokker–Planck equation as the steepest descent flow of the relative entropy functional in the space of probability measures, endowed with the Wasserstein distance.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-008-0177-3