Linearization of discrete-time systems
The algebraic formalism developed in this paper unifies the study of the accessibility problem and various notions of feedback linearizability for discrete-time nonlinear systems. The accessibility problem for nonlinear discrete-time systems is shown to be easy to tackle by means of standard linear...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1996-11, Vol.34 (6), p.1999-2023 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The algebraic formalism developed in this paper unifies the study of the accessibility problem and various notions of feedback linearizability for discrete-time nonlinear systems. The accessibility problem for nonlinear discrete-time systems is shown to be easy to tackle by means of standard linear algebraic tools, whereas this is not the case for nonlinear continuous-time systems, in which case the most suitable approach is provided by differential geometry. The feedback linearization problem for discrete-time systems is recasted through the language of differential forms. In the event that a system is not feedback linearizable, the largest feedback linearizable subsystem is characterized within the same formalism using the notion of derived flag of a Pfaffian system. A discrete-time system may be linearizable by dynamic state feedback, though it is not linearizable by static state feedback. Necessary and sufficient conditions are given for the existence of a so-called linearizing output, which in turn is a sufficient condition for dynamic state feedback linearizability. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/S0363012994267315 |