Non-uniqueness of weak solutions for the fractal Burgers equation

The notion of Kruzhkov entropy solution was extended by the first author in 2007 to conservation laws with a fractional Laplacian diffusion term; this notion led to well-posedness for the Cauchy problem in the L∞-framework. In the present paper, we further motivate the introduction of entropy soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Henri Poincaré. Analyse non linéaire 2010-08, Vol.27 (4), p.997-1016
Hauptverfasser: Alibaud, Nathaël, Andreianov, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1016
container_issue 4
container_start_page 997
container_title Annales de l'Institut Henri Poincaré. Analyse non linéaire
container_volume 27
creator Alibaud, Nathaël
Andreianov, Boris
description The notion of Kruzhkov entropy solution was extended by the first author in 2007 to conservation laws with a fractional Laplacian diffusion term; this notion led to well-posedness for the Cauchy problem in the L∞-framework. In the present paper, we further motivate the introduction of entropy solutions, showing that in the case of fractional diffusion of order strictly less than one, uniqueness of a weak solution may fail. La notion de solution entropique de Kruzhkov a été étendue par Alibaud en 2007 aux lois de conservation avec un terme diffusif fractionnaire ; ceci a permis de démontrer que le prolème de Cauchy est bien posé dans le cadre L∞. Dans cet article, on montre que si l'ordre de l'opérateur de diffusion est strictement plus petit que un, alors il peut exister plusieurs solutions faibles ; on apporte ainsi une motivation supplémentaire à l'utilisation des solutions entropiques.
doi_str_mv 10.1016/j.anihpc.2010.01.008
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00405892v3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0294144910000107</els_id><sourcerecordid>oai_HAL_hal_00405892v3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-f29b91360319234f8cdf86ca856aff481f8d04eafe72a8363dc283db009445f23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxi8MDAknD-SOgtSqYAiVbDAbLmOTV1C3NpJEf8eR0GMTHc6Pc-d7kXokkBOgJQ321y1brPTOYU0ApIDiCM0IWLGMsIZHKMJ0Iqnnlen6CzGLQDMoCgnaP7s26xv3b43rYkRe4u_jPrA0Td953wbsfUBdxuDbVC6Uw2-68O7CRGbfa8G4hydWNVEc_Fbp-jt4f51scxWL49Pi_kq01zQLrO0WleElcBIRRm3QtdWlFqJolTWckGsqIEbZc2MKsFKVmsqWL0GqDgvLGVTdD3u3ahG7oL7VOFbeuXkcr6SwwyAQyEqemCJ5SOrg48xGPsnEJBDZHIrx8jkEJkEkmyRtKtR26moVZM-brWLfy5lKTJGy8TdjpxJ_x6cCTJqZ1ptaheM7mTt3f-HfgAWNoKP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-uniqueness of weak solutions for the fractal Burgers equation</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>European Mathematical Society Publishing House</source><source>NUMDAM</source><creator>Alibaud, Nathaël ; Andreianov, Boris</creator><creatorcontrib>Alibaud, Nathaël ; Andreianov, Boris</creatorcontrib><description>The notion of Kruzhkov entropy solution was extended by the first author in 2007 to conservation laws with a fractional Laplacian diffusion term; this notion led to well-posedness for the Cauchy problem in the L∞-framework. In the present paper, we further motivate the introduction of entropy solutions, showing that in the case of fractional diffusion of order strictly less than one, uniqueness of a weak solution may fail. La notion de solution entropique de Kruzhkov a été étendue par Alibaud en 2007 aux lois de conservation avec un terme diffusif fractionnaire ; ceci a permis de démontrer que le prolème de Cauchy est bien posé dans le cadre L∞. Dans cet article, on montre que si l'ordre de l'opérateur de diffusion est strictement plus petit que un, alors il peut exister plusieurs solutions faibles ; on apporte ainsi une motivation supplémentaire à l'utilisation des solutions entropiques.</description><identifier>ISSN: 0294-1449</identifier><identifier>EISSN: 1873-1430</identifier><identifier>DOI: 10.1016/j.anihpc.2010.01.008</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Admissibility of solutions ; Analysis of PDEs ; Conservation law ; Entropy solution ; Exact sciences and technology ; Fractional Laplacian ; Lévy–Khintchine's formula ; Mathematical analysis ; Mathematics ; Measure and integration ; Non-local diffusion ; Non-uniqueness of weak solutions ; Oleĭnik's condition ; Partial differential equations ; Sciences and techniques of general use</subject><ispartof>Annales de l'Institut Henri Poincaré. Analyse non linéaire, 2010-08, Vol.27 (4), p.997-1016</ispartof><rights>2010 2010 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-f29b91360319234f8cdf86ca856aff481f8d04eafe72a8363dc283db009445f23</citedby><cites>FETCH-LOGICAL-c482t-f29b91360319234f8cdf86ca856aff481f8d04eafe72a8363dc283db009445f23</cites><orcidid>0000-0002-9314-2360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0294144910000107$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23056326$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00405892$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alibaud, Nathaël</creatorcontrib><creatorcontrib>Andreianov, Boris</creatorcontrib><title>Non-uniqueness of weak solutions for the fractal Burgers equation</title><title>Annales de l'Institut Henri Poincaré. Analyse non linéaire</title><description>The notion of Kruzhkov entropy solution was extended by the first author in 2007 to conservation laws with a fractional Laplacian diffusion term; this notion led to well-posedness for the Cauchy problem in the L∞-framework. In the present paper, we further motivate the introduction of entropy solutions, showing that in the case of fractional diffusion of order strictly less than one, uniqueness of a weak solution may fail. La notion de solution entropique de Kruzhkov a été étendue par Alibaud en 2007 aux lois de conservation avec un terme diffusif fractionnaire ; ceci a permis de démontrer que le prolème de Cauchy est bien posé dans le cadre L∞. Dans cet article, on montre que si l'ordre de l'opérateur de diffusion est strictement plus petit que un, alors il peut exister plusieurs solutions faibles ; on apporte ainsi une motivation supplémentaire à l'utilisation des solutions entropiques.</description><subject>Admissibility of solutions</subject><subject>Analysis of PDEs</subject><subject>Conservation law</subject><subject>Entropy solution</subject><subject>Exact sciences and technology</subject><subject>Fractional Laplacian</subject><subject>Lévy–Khintchine's formula</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Measure and integration</subject><subject>Non-local diffusion</subject><subject>Non-uniqueness of weak solutions</subject><subject>Oleĭnik's condition</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><issn>0294-1449</issn><issn>1873-1430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxi8MDAknD-SOgtSqYAiVbDAbLmOTV1C3NpJEf8eR0GMTHc6Pc-d7kXokkBOgJQ321y1brPTOYU0ApIDiCM0IWLGMsIZHKMJ0Iqnnlen6CzGLQDMoCgnaP7s26xv3b43rYkRe4u_jPrA0Td953wbsfUBdxuDbVC6Uw2-68O7CRGbfa8G4hydWNVEc_Fbp-jt4f51scxWL49Pi_kq01zQLrO0WleElcBIRRm3QtdWlFqJolTWckGsqIEbZc2MKsFKVmsqWL0GqDgvLGVTdD3u3ahG7oL7VOFbeuXkcr6SwwyAQyEqemCJ5SOrg48xGPsnEJBDZHIrx8jkEJkEkmyRtKtR26moVZM-brWLfy5lKTJGy8TdjpxJ_x6cCTJqZ1ptaheM7mTt3f-HfgAWNoKP</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Alibaud, Nathaël</creator><creator>Andreianov, Boris</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><general>EMS</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9314-2360</orcidid></search><sort><creationdate>201008</creationdate><title>Non-uniqueness of weak solutions for the fractal Burgers equation</title><author>Alibaud, Nathaël ; Andreianov, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-f29b91360319234f8cdf86ca856aff481f8d04eafe72a8363dc283db009445f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Admissibility of solutions</topic><topic>Analysis of PDEs</topic><topic>Conservation law</topic><topic>Entropy solution</topic><topic>Exact sciences and technology</topic><topic>Fractional Laplacian</topic><topic>Lévy–Khintchine's formula</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Measure and integration</topic><topic>Non-local diffusion</topic><topic>Non-uniqueness of weak solutions</topic><topic>Oleĭnik's condition</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alibaud, Nathaël</creatorcontrib><creatorcontrib>Andreianov, Boris</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annales de l'Institut Henri Poincaré. Analyse non linéaire</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alibaud, Nathaël</au><au>Andreianov, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-uniqueness of weak solutions for the fractal Burgers equation</atitle><jtitle>Annales de l'Institut Henri Poincaré. Analyse non linéaire</jtitle><date>2010-08</date><risdate>2010</risdate><volume>27</volume><issue>4</issue><spage>997</spage><epage>1016</epage><pages>997-1016</pages><issn>0294-1449</issn><eissn>1873-1430</eissn><abstract>The notion of Kruzhkov entropy solution was extended by the first author in 2007 to conservation laws with a fractional Laplacian diffusion term; this notion led to well-posedness for the Cauchy problem in the L∞-framework. In the present paper, we further motivate the introduction of entropy solutions, showing that in the case of fractional diffusion of order strictly less than one, uniqueness of a weak solution may fail. La notion de solution entropique de Kruzhkov a été étendue par Alibaud en 2007 aux lois de conservation avec un terme diffusif fractionnaire ; ceci a permis de démontrer que le prolème de Cauchy est bien posé dans le cadre L∞. Dans cet article, on montre que si l'ordre de l'opérateur de diffusion est strictement plus petit que un, alors il peut exister plusieurs solutions faibles ; on apporte ainsi une motivation supplémentaire à l'utilisation des solutions entropiques.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.anihpc.2010.01.008</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9314-2360</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0294-1449
ispartof Annales de l'Institut Henri Poincaré. Analyse non linéaire, 2010-08, Vol.27 (4), p.997-1016
issn 0294-1449
1873-1430
language eng
recordid cdi_hal_primary_oai_HAL_hal_00405892v3
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; European Mathematical Society Publishing House; NUMDAM
subjects Admissibility of solutions
Analysis of PDEs
Conservation law
Entropy solution
Exact sciences and technology
Fractional Laplacian
Lévy–Khintchine's formula
Mathematical analysis
Mathematics
Measure and integration
Non-local diffusion
Non-uniqueness of weak solutions
Oleĭnik's condition
Partial differential equations
Sciences and techniques of general use
title Non-uniqueness of weak solutions for the fractal Burgers equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-uniqueness%20of%20weak%20solutions%20for%20the%20fractal%20Burgers%20equation&rft.jtitle=Annales%20de%20l'Institut%20Henri%20Poincar%C3%A9.%20Analyse%20non%20lin%C3%A9aire&rft.au=Alibaud,%20Natha%C3%ABl&rft.date=2010-08&rft.volume=27&rft.issue=4&rft.spage=997&rft.epage=1016&rft.pages=997-1016&rft.issn=0294-1449&rft.eissn=1873-1430&rft_id=info:doi/10.1016/j.anihpc.2010.01.008&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00405892v3%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0294144910000107&rfr_iscdi=true