Non-uniqueness of weak solutions for the fractal Burgers equation

The notion of Kruzhkov entropy solution was extended by the first author in 2007 to conservation laws with a fractional Laplacian diffusion term; this notion led to well-posedness for the Cauchy problem in the L∞-framework. In the present paper, we further motivate the introduction of entropy soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Henri Poincaré. Analyse non linéaire 2010-08, Vol.27 (4), p.997-1016
Hauptverfasser: Alibaud, Nathaël, Andreianov, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The notion of Kruzhkov entropy solution was extended by the first author in 2007 to conservation laws with a fractional Laplacian diffusion term; this notion led to well-posedness for the Cauchy problem in the L∞-framework. In the present paper, we further motivate the introduction of entropy solutions, showing that in the case of fractional diffusion of order strictly less than one, uniqueness of a weak solution may fail. La notion de solution entropique de Kruzhkov a été étendue par Alibaud en 2007 aux lois de conservation avec un terme diffusif fractionnaire ; ceci a permis de démontrer que le prolème de Cauchy est bien posé dans le cadre L∞. Dans cet article, on montre que si l'ordre de l'opérateur de diffusion est strictement plus petit que un, alors il peut exister plusieurs solutions faibles ; on apporte ainsi une motivation supplémentaire à l'utilisation des solutions entropiques.
ISSN:0294-1449
1873-1430
DOI:10.1016/j.anihpc.2010.01.008