How to impose physically coherent initial conditions to a fractional system?

In this paper, it is shown that neither Riemann–Liouville nor Caputo definitions for fractional differentiation can be used to take into account initial conditions in a convenient way from a physical point of view. This demonstration is done on a counter-example. Then the paper proposes a representa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2010-05, Vol.15 (5), p.1318-1326
Hauptverfasser: Sabatier, Jocelyn, Merveillaut, Mathieu, Malti, Rachid, Oustaloup, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, it is shown that neither Riemann–Liouville nor Caputo definitions for fractional differentiation can be used to take into account initial conditions in a convenient way from a physical point of view. This demonstration is done on a counter-example. Then the paper proposes a representation for fractional order systems that lead to a physically coherent initialization for the considered systems. This representation involves a classical linear integer system and a system described by a parabolic equation. It is thus also shown that fractional order systems are halfway between these two classes of systems, and are particularly suited for diffusion phenomena modelling.
ISSN:1007-5704
1878-7274
DOI:10.1016/j.cnsns.2009.05.070