How to impose physically coherent initial conditions to a fractional system?
In this paper, it is shown that neither Riemann–Liouville nor Caputo definitions for fractional differentiation can be used to take into account initial conditions in a convenient way from a physical point of view. This demonstration is done on a counter-example. Then the paper proposes a representa...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2010-05, Vol.15 (5), p.1318-1326 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, it is shown that neither Riemann–Liouville nor Caputo definitions for fractional differentiation can be used to take into account initial conditions in a convenient way from a physical point of view. This demonstration is done on a counter-example. Then the paper proposes a representation for fractional order systems that lead to a physically coherent initialization for the considered systems. This representation involves a classical linear integer system and a system described by a parabolic equation. It is thus also shown that fractional order systems are halfway between these two classes of systems, and are particularly suited for diffusion phenomena modelling. |
---|---|
ISSN: | 1007-5704 1878-7274 |
DOI: | 10.1016/j.cnsns.2009.05.070 |