Tribological, physicochemical and thermal study of the abrupt friction transition during carbon/carbon composite friction

Due to their thermo-mechanical performances maintained at high temperature, C/C composites demonstrate their advantages in high energy aeronautical braking. During friction a typical tribological behavior was observed. At first, an abrupt transition of friction coefficient takes place systematically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wear 2009-06, Vol.267 (5), p.846-852
Hauptverfasser: Kasem, H., Bonnamy, S., Berthier, Y., Dufrénoy, P., Jacquemard, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to their thermo-mechanical performances maintained at high temperature, C/C composites demonstrate their advantages in high energy aeronautical braking. During friction a typical tribological behavior was observed. At first, an abrupt transition of friction coefficient takes place systematically from a weak value (∼0.15) to a high value (∼0.35). Before this transition, an extremely weak wear rate is associated to a weak friction coefficient value and no gas exchanges occur in the contact, this regime being called non-reactive. From the abrupt transition, a very high wear rate and strong gas exchanges associated to the high friction value occur (reactive regime). In this paper, for a better understanding of the mechanisms governing the abrupt transition during C/C composites tribological, mechanical, thermal and physico-chemical data are analyzed. Friction tests are performed on a 3D C/C composite consisting of PAN-based fibers and CVI pyrocarbon matrix in using a pin-on-disc tribometer equipped with a mass spectrometer allowing the in situ gas exchange analysis (CO 2 production, O 2 consumption) in the contact. To follow the disc surface temperature evolution before, during and after the transition, a thermal infrared camera is used. After friction, worn surfaces and interfaces are characterized by optical microscopy and scanning electron microscopy. In a final analysis, a mechanism is proposed to explain the abrupt transition.
ISSN:0043-1648
1873-2577
DOI:10.1016/j.wear.2008.12.076