Large-scale magnetic topologies of mid M dwarfs

We present in this paper, the first results of a spectropolarimetric analysis of a small sample (∼20) of active stars ranging from spectral type M0 to M8, which are either fully convective or possess a very small radiative core. This study aims at providing new constraints on dynamo processes in ful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2008-10, Vol.390 (2), p.567-581
Hauptverfasser: Morin, J., Donati, J.-F., Petit, P., Delfosse, X., Forveille, T., Albert, L., Aurière, M., Cabanac, R., Dintrans, B., Fares, R., Gastine, T., Jardine, M. M., Lignières, F., Paletou, F., Ramirez Velez, J. C., Théado, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present in this paper, the first results of a spectropolarimetric analysis of a small sample (∼20) of active stars ranging from spectral type M0 to M8, which are either fully convective or possess a very small radiative core. This study aims at providing new constraints on dynamo processes in fully convective stars. This paper focuses on five stars of spectral type ∼M4, i.e. with masses close to the full convection threshold (≃0.35 M⊙), and with short rotational periods. Tomographic imaging techniques allow us to reconstruct the surface magnetic topologies from the rotationally modulated time-series of circularly polarized profiles. We find that all stars host mainly axisymmetric large-scale poloidal fields. Three stars were observed at two different epochs separated by ∼1 yr; we find the magnetic topologies to be globally stable on this time-scale. We also provide an accurate estimation of the rotational period of all stars, thus allowing us to start studying how rotation impacts the large-scale magnetic field.
ISSN:0035-8711
1365-2966
DOI:10.1111/j.1365-2966.2008.13809.x