Asymptotic Normality in Density Support Estimation
Let $X_1,\dots,X_n$ be $n$ independent observations drawn from a multivariate probability density $f$ with compact support $S_f$. This paper is devoted to the study of the estimator $\hat{S}_n$ of $S_f$ defined as unions of balls centered at the $X_i$ and of common radius $r_n$. Using tools from Rie...
Gespeichert in:
Veröffentlicht in: | Electronic journal of probability 2009-01, Vol.14 (none), p.2617-2635 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $X_1,\dots,X_n$ be $n$ independent observations drawn from a multivariate probability density $f$ with compact support $S_f$. This paper is devoted to the study of the estimator $\hat{S}_n$ of $S_f$ defined as unions of balls centered at the $X_i$ and of common radius $r_n$. Using tools from Riemannian geometry, and under mild assumptions on $f$ and the sequence $(r_n)$, we prove a central limit theorem for $\lambda (S_n \Delta S_f)$, where $\lambda$ denotes the Lebesgue measure on $\mathbb R^d$ and $\Delta$ the symmetric difference operation |
---|---|
ISSN: | 1083-6489 1083-6489 |
DOI: | 10.1214/EJP.v14-722 |