Asymptotic Normality in Density Support Estimation

Let $X_1,\dots,X_n$ be $n$ independent observations drawn from a multivariate probability density $f$ with compact support $S_f$. This paper is devoted to the study of the estimator $\hat{S}_n$ of $S_f$ defined as unions of balls centered at the $X_i$ and of common radius $r_n$. Using tools from Rie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of probability 2009-01, Vol.14 (none), p.2617-2635
Hauptverfasser: Biau, Gérard, Cadre, Benoit, Mason, David, Pelletier, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $X_1,\dots,X_n$ be $n$ independent observations drawn from a multivariate probability density $f$ with compact support $S_f$. This paper is devoted to the study of the estimator $\hat{S}_n$ of $S_f$ defined as unions of balls centered at the $X_i$ and of common radius $r_n$. Using tools from Riemannian geometry, and under mild assumptions on $f$ and the sequence $(r_n)$, we prove a central limit theorem for $\lambda (S_n \Delta S_f)$, where $\lambda$ denotes the Lebesgue measure on $\mathbb R^d$ and $\Delta$ the symmetric difference operation
ISSN:1083-6489
1083-6489
DOI:10.1214/EJP.v14-722