Semiclassical analysis of the Schrödinger equation with a partially confining potential
The semiclassical limit of a partially confined electron gas is performed. The length scale in the confined direction is of the order of magnitude of the electron de Broglie length whereas the nonconfined lengthscale is larger. A partial semiclassical limit of the Schrödinger equation (in the noncon...
Gespeichert in:
Veröffentlicht in: | Journal de mathématiques pures et appliquées 2005-05, Vol.84 (5), p.580-614 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 5 |
container_start_page | 580 |
container_title | Journal de mathématiques pures et appliquées |
container_volume | 84 |
creator | Ben Abdallah, Naoufel Méhats, Florian |
description | The semiclassical limit of a partially confined electron gas is performed. The length scale in the confined direction is of the order of magnitude of the electron de Broglie length whereas the nonconfined lengthscale is larger. A partial semiclassical limit of the Schrödinger equation (in the nonconfined direction) is performed and leads to the so-called subband model. The limiting behaviour is described by an infinite number of quasistatic Schrödinger equations for the confined direction and an infinite number of time-dependent Vlasov equations in the nonconfined direction.
Nous appliquons la limite semiclassique au système formé par un gaz d'électrons partiellement confinés. Dans la direction du confinement, l'échelle spatiale caractéristique est de l'ordre de grandeur de la longueur de de Broglie des électrons, tandis que cette échelle est bien plus grande dans les directions non confinées. Une limite semiclassique partielle appliquée à l'équation de Schrödinger conduit au modèle du transport par sous-bandes. Ce modèle limite est constitué d'un nombre infini d'équations de Schrödinger quasi-statiques dans la direction du confinement couplé à un nombre infini d'équations de Vlasov non-stationnaires pour les directions non confinées. |
doi_str_mv | 10.1016/j.matpur.2004.10.004 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00378930v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021782404001321</els_id><sourcerecordid>oai_HAL_hal_00378930v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-bac49e3591328800289aa62ca64dffbfa3e33eca5de1a646c159bace7725cbe33</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhT2ARPl5AwYvDAwNdpzfBamqgCJVYihIbNatc01cpU6w06K-GC_Ai-EoCDa8HOnc79i-h5BLziLOeHazibbQdzsXxYwlwYqCHJEJYzGf5kWcnJBT7zcsnDLLJuR1hVujGvDeKGgoWGgO3njaatrXSFeqdl-flbFv6Ci-76A3raUfpq8p0A5cb6BpDlS1VhsbKNq1PdrBPSfHGhqPFz96Rl7u757ni-ny6eFxPltOlchZP12DSkoUaclFXBThl0UJkMUKsqTSeq1BoBCoIK2QBy9TPC1DBvM8TtU6zM7I9XhvDY3snNmCO8gWjFzMlnLwGBN5UQq254FNRla51nuH-jfAmRzakxs5tieH9gY3SIhdjbEOfChJO7DK-L9slnOW5EXgbkcOw757g056ZdAqrIxD1cuqNf8_9A2cs4vk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semiclassical analysis of the Schrödinger equation with a partially confining potential</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ben Abdallah, Naoufel ; Méhats, Florian</creator><creatorcontrib>Ben Abdallah, Naoufel ; Méhats, Florian</creatorcontrib><description>The semiclassical limit of a partially confined electron gas is performed. The length scale in the confined direction is of the order of magnitude of the electron de Broglie length whereas the nonconfined lengthscale is larger. A partial semiclassical limit of the Schrödinger equation (in the nonconfined direction) is performed and leads to the so-called subband model. The limiting behaviour is described by an infinite number of quasistatic Schrödinger equations for the confined direction and an infinite number of time-dependent Vlasov equations in the nonconfined direction.
Nous appliquons la limite semiclassique au système formé par un gaz d'électrons partiellement confinés. Dans la direction du confinement, l'échelle spatiale caractéristique est de l'ordre de grandeur de la longueur de de Broglie des électrons, tandis que cette échelle est bien plus grande dans les directions non confinées. Une limite semiclassique partielle appliquée à l'équation de Schrödinger conduit au modèle du transport par sous-bandes. Ce modèle limite est constitué d'un nombre infini d'équations de Schrödinger quasi-statiques dans la direction du confinement couplé à un nombre infini d'équations de Vlasov non-stationnaires pour les directions non confinées.</description><identifier>ISSN: 0021-7824</identifier><identifier>DOI: 10.1016/j.matpur.2004.10.004</identifier><identifier>CODEN: JMPAAM</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Analysis of PDEs ; Exact sciences and technology ; Fermion systems and electron gas ; Mathematical analysis ; Mathematics ; Partial differential equations ; Physics ; Quantum statistical mechanics ; Sciences and techniques of general use ; Semiclassical limit ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Subband transport ; Two-dimensional electron gas ; Wigner measures</subject><ispartof>Journal de mathématiques pures et appliquées, 2005-05, Vol.84 (5), p.580-614</ispartof><rights>2004 Elsevier SAS</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-bac49e3591328800289aa62ca64dffbfa3e33eca5de1a646c159bace7725cbe33</citedby><cites>FETCH-LOGICAL-c370t-bac49e3591328800289aa62ca64dffbfa3e33eca5de1a646c159bace7725cbe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021782404001321$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16710478$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00378930$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben Abdallah, Naoufel</creatorcontrib><creatorcontrib>Méhats, Florian</creatorcontrib><title>Semiclassical analysis of the Schrödinger equation with a partially confining potential</title><title>Journal de mathématiques pures et appliquées</title><description>The semiclassical limit of a partially confined electron gas is performed. The length scale in the confined direction is of the order of magnitude of the electron de Broglie length whereas the nonconfined lengthscale is larger. A partial semiclassical limit of the Schrödinger equation (in the nonconfined direction) is performed and leads to the so-called subband model. The limiting behaviour is described by an infinite number of quasistatic Schrödinger equations for the confined direction and an infinite number of time-dependent Vlasov equations in the nonconfined direction.
Nous appliquons la limite semiclassique au système formé par un gaz d'électrons partiellement confinés. Dans la direction du confinement, l'échelle spatiale caractéristique est de l'ordre de grandeur de la longueur de de Broglie des électrons, tandis que cette échelle est bien plus grande dans les directions non confinées. Une limite semiclassique partielle appliquée à l'équation de Schrödinger conduit au modèle du transport par sous-bandes. Ce modèle limite est constitué d'un nombre infini d'équations de Schrödinger quasi-statiques dans la direction du confinement couplé à un nombre infini d'équations de Vlasov non-stationnaires pour les directions non confinées.</description><subject>Analysis of PDEs</subject><subject>Exact sciences and technology</subject><subject>Fermion systems and electron gas</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Quantum statistical mechanics</subject><subject>Sciences and techniques of general use</subject><subject>Semiclassical limit</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Subband transport</subject><subject>Two-dimensional electron gas</subject><subject>Wigner measures</subject><issn>0021-7824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhT2ARPl5AwYvDAwNdpzfBamqgCJVYihIbNatc01cpU6w06K-GC_Ai-EoCDa8HOnc79i-h5BLziLOeHazibbQdzsXxYwlwYqCHJEJYzGf5kWcnJBT7zcsnDLLJuR1hVujGvDeKGgoWGgO3njaatrXSFeqdl-flbFv6Ci-76A3raUfpq8p0A5cb6BpDlS1VhsbKNq1PdrBPSfHGhqPFz96Rl7u757ni-ny6eFxPltOlchZP12DSkoUaclFXBThl0UJkMUKsqTSeq1BoBCoIK2QBy9TPC1DBvM8TtU6zM7I9XhvDY3snNmCO8gWjFzMlnLwGBN5UQq254FNRla51nuH-jfAmRzakxs5tieH9gY3SIhdjbEOfChJO7DK-L9slnOW5EXgbkcOw757g056ZdAqrIxD1cuqNf8_9A2cs4vk</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Ben Abdallah, Naoufel</creator><creator>Méhats, Florian</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20050501</creationdate><title>Semiclassical analysis of the Schrödinger equation with a partially confining potential</title><author>Ben Abdallah, Naoufel ; Méhats, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-bac49e3591328800289aa62ca64dffbfa3e33eca5de1a646c159bace7725cbe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analysis of PDEs</topic><topic>Exact sciences and technology</topic><topic>Fermion systems and electron gas</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Quantum statistical mechanics</topic><topic>Sciences and techniques of general use</topic><topic>Semiclassical limit</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Subband transport</topic><topic>Two-dimensional electron gas</topic><topic>Wigner measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Abdallah, Naoufel</creatorcontrib><creatorcontrib>Méhats, Florian</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal de mathématiques pures et appliquées</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Abdallah, Naoufel</au><au>Méhats, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical analysis of the Schrödinger equation with a partially confining potential</atitle><jtitle>Journal de mathématiques pures et appliquées</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>84</volume><issue>5</issue><spage>580</spage><epage>614</epage><pages>580-614</pages><issn>0021-7824</issn><coden>JMPAAM</coden><abstract>The semiclassical limit of a partially confined electron gas is performed. The length scale in the confined direction is of the order of magnitude of the electron de Broglie length whereas the nonconfined lengthscale is larger. A partial semiclassical limit of the Schrödinger equation (in the nonconfined direction) is performed and leads to the so-called subband model. The limiting behaviour is described by an infinite number of quasistatic Schrödinger equations for the confined direction and an infinite number of time-dependent Vlasov equations in the nonconfined direction.
Nous appliquons la limite semiclassique au système formé par un gaz d'électrons partiellement confinés. Dans la direction du confinement, l'échelle spatiale caractéristique est de l'ordre de grandeur de la longueur de de Broglie des électrons, tandis que cette échelle est bien plus grande dans les directions non confinées. Une limite semiclassique partielle appliquée à l'équation de Schrödinger conduit au modèle du transport par sous-bandes. Ce modèle limite est constitué d'un nombre infini d'équations de Schrödinger quasi-statiques dans la direction du confinement couplé à un nombre infini d'équations de Vlasov non-stationnaires pour les directions non confinées.</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><doi>10.1016/j.matpur.2004.10.004</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-7824 |
ispartof | Journal de mathématiques pures et appliquées, 2005-05, Vol.84 (5), p.580-614 |
issn | 0021-7824 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00378930v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Analysis of PDEs Exact sciences and technology Fermion systems and electron gas Mathematical analysis Mathematics Partial differential equations Physics Quantum statistical mechanics Sciences and techniques of general use Semiclassical limit Statistical physics, thermodynamics, and nonlinear dynamical systems Subband transport Two-dimensional electron gas Wigner measures |
title | Semiclassical analysis of the Schrödinger equation with a partially confining potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20analysis%20of%20the%20Schr%C3%B6dinger%20equation%20with%20a%20partially%20confining%20potential&rft.jtitle=Journal%20de%20math%C3%A9matiques%20pures%20et%20appliqu%C3%A9es&rft.au=Ben%20Abdallah,%20Naoufel&rft.date=2005-05-01&rft.volume=84&rft.issue=5&rft.spage=580&rft.epage=614&rft.pages=580-614&rft.issn=0021-7824&rft.coden=JMPAAM&rft_id=info:doi/10.1016/j.matpur.2004.10.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00378930v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021782404001321&rfr_iscdi=true |