Semiclassical analysis of the Schrödinger equation with a partially confining potential

The semiclassical limit of a partially confined electron gas is performed. The length scale in the confined direction is of the order of magnitude of the electron de Broglie length whereas the nonconfined lengthscale is larger. A partial semiclassical limit of the Schrödinger equation (in the noncon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal de mathématiques pures et appliquées 2005-05, Vol.84 (5), p.580-614
Hauptverfasser: Ben Abdallah, Naoufel, Méhats, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 5
container_start_page 580
container_title Journal de mathématiques pures et appliquées
container_volume 84
creator Ben Abdallah, Naoufel
Méhats, Florian
description The semiclassical limit of a partially confined electron gas is performed. The length scale in the confined direction is of the order of magnitude of the electron de Broglie length whereas the nonconfined lengthscale is larger. A partial semiclassical limit of the Schrödinger equation (in the nonconfined direction) is performed and leads to the so-called subband model. The limiting behaviour is described by an infinite number of quasistatic Schrödinger equations for the confined direction and an infinite number of time-dependent Vlasov equations in the nonconfined direction. Nous appliquons la limite semiclassique au système formé par un gaz d'électrons partiellement confinés. Dans la direction du confinement, l'échelle spatiale caractéristique est de l'ordre de grandeur de la longueur de de Broglie des électrons, tandis que cette échelle est bien plus grande dans les directions non confinées. Une limite semiclassique partielle appliquée à l'équation de Schrödinger conduit au modèle du transport par sous-bandes. Ce modèle limite est constitué d'un nombre infini d'équations de Schrödinger quasi-statiques dans la direction du confinement couplé à un nombre infini d'équations de Vlasov non-stationnaires pour les directions non confinées.
doi_str_mv 10.1016/j.matpur.2004.10.004
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00378930v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021782404001321</els_id><sourcerecordid>oai_HAL_hal_00378930v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-bac49e3591328800289aa62ca64dffbfa3e33eca5de1a646c159bace7725cbe33</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhT2ARPl5AwYvDAwNdpzfBamqgCJVYihIbNatc01cpU6w06K-GC_Ai-EoCDa8HOnc79i-h5BLziLOeHazibbQdzsXxYwlwYqCHJEJYzGf5kWcnJBT7zcsnDLLJuR1hVujGvDeKGgoWGgO3njaatrXSFeqdl-flbFv6Ci-76A3raUfpq8p0A5cb6BpDlS1VhsbKNq1PdrBPSfHGhqPFz96Rl7u757ni-ny6eFxPltOlchZP12DSkoUaclFXBThl0UJkMUKsqTSeq1BoBCoIK2QBy9TPC1DBvM8TtU6zM7I9XhvDY3snNmCO8gWjFzMlnLwGBN5UQq254FNRla51nuH-jfAmRzakxs5tieH9gY3SIhdjbEOfChJO7DK-L9slnOW5EXgbkcOw757g056ZdAqrIxD1cuqNf8_9A2cs4vk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semiclassical analysis of the Schrödinger equation with a partially confining potential</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ben Abdallah, Naoufel ; Méhats, Florian</creator><creatorcontrib>Ben Abdallah, Naoufel ; Méhats, Florian</creatorcontrib><description>The semiclassical limit of a partially confined electron gas is performed. The length scale in the confined direction is of the order of magnitude of the electron de Broglie length whereas the nonconfined lengthscale is larger. A partial semiclassical limit of the Schrödinger equation (in the nonconfined direction) is performed and leads to the so-called subband model. The limiting behaviour is described by an infinite number of quasistatic Schrödinger equations for the confined direction and an infinite number of time-dependent Vlasov equations in the nonconfined direction. Nous appliquons la limite semiclassique au système formé par un gaz d'électrons partiellement confinés. Dans la direction du confinement, l'échelle spatiale caractéristique est de l'ordre de grandeur de la longueur de de Broglie des électrons, tandis que cette échelle est bien plus grande dans les directions non confinées. Une limite semiclassique partielle appliquée à l'équation de Schrödinger conduit au modèle du transport par sous-bandes. Ce modèle limite est constitué d'un nombre infini d'équations de Schrödinger quasi-statiques dans la direction du confinement couplé à un nombre infini d'équations de Vlasov non-stationnaires pour les directions non confinées.</description><identifier>ISSN: 0021-7824</identifier><identifier>DOI: 10.1016/j.matpur.2004.10.004</identifier><identifier>CODEN: JMPAAM</identifier><language>eng</language><publisher>Paris: Elsevier SAS</publisher><subject>Analysis of PDEs ; Exact sciences and technology ; Fermion systems and electron gas ; Mathematical analysis ; Mathematics ; Partial differential equations ; Physics ; Quantum statistical mechanics ; Sciences and techniques of general use ; Semiclassical limit ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Subband transport ; Two-dimensional electron gas ; Wigner measures</subject><ispartof>Journal de mathématiques pures et appliquées, 2005-05, Vol.84 (5), p.580-614</ispartof><rights>2004 Elsevier SAS</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-bac49e3591328800289aa62ca64dffbfa3e33eca5de1a646c159bace7725cbe33</citedby><cites>FETCH-LOGICAL-c370t-bac49e3591328800289aa62ca64dffbfa3e33eca5de1a646c159bace7725cbe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021782404001321$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16710478$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00378930$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben Abdallah, Naoufel</creatorcontrib><creatorcontrib>Méhats, Florian</creatorcontrib><title>Semiclassical analysis of the Schrödinger equation with a partially confining potential</title><title>Journal de mathématiques pures et appliquées</title><description>The semiclassical limit of a partially confined electron gas is performed. The length scale in the confined direction is of the order of magnitude of the electron de Broglie length whereas the nonconfined lengthscale is larger. A partial semiclassical limit of the Schrödinger equation (in the nonconfined direction) is performed and leads to the so-called subband model. The limiting behaviour is described by an infinite number of quasistatic Schrödinger equations for the confined direction and an infinite number of time-dependent Vlasov equations in the nonconfined direction. Nous appliquons la limite semiclassique au système formé par un gaz d'électrons partiellement confinés. Dans la direction du confinement, l'échelle spatiale caractéristique est de l'ordre de grandeur de la longueur de de Broglie des électrons, tandis que cette échelle est bien plus grande dans les directions non confinées. Une limite semiclassique partielle appliquée à l'équation de Schrödinger conduit au modèle du transport par sous-bandes. Ce modèle limite est constitué d'un nombre infini d'équations de Schrödinger quasi-statiques dans la direction du confinement couplé à un nombre infini d'équations de Vlasov non-stationnaires pour les directions non confinées.</description><subject>Analysis of PDEs</subject><subject>Exact sciences and technology</subject><subject>Fermion systems and electron gas</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Quantum statistical mechanics</subject><subject>Sciences and techniques of general use</subject><subject>Semiclassical limit</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Subband transport</subject><subject>Two-dimensional electron gas</subject><subject>Wigner measures</subject><issn>0021-7824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhT2ARPl5AwYvDAwNdpzfBamqgCJVYihIbNatc01cpU6w06K-GC_Ai-EoCDa8HOnc79i-h5BLziLOeHazibbQdzsXxYwlwYqCHJEJYzGf5kWcnJBT7zcsnDLLJuR1hVujGvDeKGgoWGgO3njaatrXSFeqdl-flbFv6Ci-76A3raUfpq8p0A5cb6BpDlS1VhsbKNq1PdrBPSfHGhqPFz96Rl7u757ni-ny6eFxPltOlchZP12DSkoUaclFXBThl0UJkMUKsqTSeq1BoBCoIK2QBy9TPC1DBvM8TtU6zM7I9XhvDY3snNmCO8gWjFzMlnLwGBN5UQq254FNRla51nuH-jfAmRzakxs5tieH9gY3SIhdjbEOfChJO7DK-L9slnOW5EXgbkcOw757g056ZdAqrIxD1cuqNf8_9A2cs4vk</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Ben Abdallah, Naoufel</creator><creator>Méhats, Florian</creator><general>Elsevier SAS</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20050501</creationdate><title>Semiclassical analysis of the Schrödinger equation with a partially confining potential</title><author>Ben Abdallah, Naoufel ; Méhats, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-bac49e3591328800289aa62ca64dffbfa3e33eca5de1a646c159bace7725cbe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analysis of PDEs</topic><topic>Exact sciences and technology</topic><topic>Fermion systems and electron gas</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Quantum statistical mechanics</topic><topic>Sciences and techniques of general use</topic><topic>Semiclassical limit</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Subband transport</topic><topic>Two-dimensional electron gas</topic><topic>Wigner measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Abdallah, Naoufel</creatorcontrib><creatorcontrib>Méhats, Florian</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal de mathématiques pures et appliquées</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Abdallah, Naoufel</au><au>Méhats, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiclassical analysis of the Schrödinger equation with a partially confining potential</atitle><jtitle>Journal de mathématiques pures et appliquées</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>84</volume><issue>5</issue><spage>580</spage><epage>614</epage><pages>580-614</pages><issn>0021-7824</issn><coden>JMPAAM</coden><abstract>The semiclassical limit of a partially confined electron gas is performed. The length scale in the confined direction is of the order of magnitude of the electron de Broglie length whereas the nonconfined lengthscale is larger. A partial semiclassical limit of the Schrödinger equation (in the nonconfined direction) is performed and leads to the so-called subband model. The limiting behaviour is described by an infinite number of quasistatic Schrödinger equations for the confined direction and an infinite number of time-dependent Vlasov equations in the nonconfined direction. Nous appliquons la limite semiclassique au système formé par un gaz d'électrons partiellement confinés. Dans la direction du confinement, l'échelle spatiale caractéristique est de l'ordre de grandeur de la longueur de de Broglie des électrons, tandis que cette échelle est bien plus grande dans les directions non confinées. Une limite semiclassique partielle appliquée à l'équation de Schrödinger conduit au modèle du transport par sous-bandes. Ce modèle limite est constitué d'un nombre infini d'équations de Schrödinger quasi-statiques dans la direction du confinement couplé à un nombre infini d'équations de Vlasov non-stationnaires pour les directions non confinées.</abstract><cop>Paris</cop><pub>Elsevier SAS</pub><doi>10.1016/j.matpur.2004.10.004</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-7824
ispartof Journal de mathématiques pures et appliquées, 2005-05, Vol.84 (5), p.580-614
issn 0021-7824
language eng
recordid cdi_hal_primary_oai_HAL_hal_00378930v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis of PDEs
Exact sciences and technology
Fermion systems and electron gas
Mathematical analysis
Mathematics
Partial differential equations
Physics
Quantum statistical mechanics
Sciences and techniques of general use
Semiclassical limit
Statistical physics, thermodynamics, and nonlinear dynamical systems
Subband transport
Two-dimensional electron gas
Wigner measures
title Semiclassical analysis of the Schrödinger equation with a partially confining potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiclassical%20analysis%20of%20the%20Schr%C3%B6dinger%20equation%20with%20a%20partially%20confining%20potential&rft.jtitle=Journal%20de%20math%C3%A9matiques%20pures%20et%20appliqu%C3%A9es&rft.au=Ben%20Abdallah,%20Naoufel&rft.date=2005-05-01&rft.volume=84&rft.issue=5&rft.spage=580&rft.epage=614&rft.pages=580-614&rft.issn=0021-7824&rft.coden=JMPAAM&rft_id=info:doi/10.1016/j.matpur.2004.10.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00378930v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021782404001321&rfr_iscdi=true