DIFFUSIVE TRANSPORT OF PARTIALLY QUANTIZED PARTICLES: EXISTENCE, UNIQUENESS AND LONG-TIME BEHAVIOUR
A self-consistent model for charged particles, accounting for quantum confinement, diffusive transport and electrostatic interaction is considered. The electrostatic potential is a solution of a three-dimensional Poisson equation with the particle density as the source term. This density is the prod...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2006-10, Vol.49 (3), p.513-549 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A self-consistent model for charged particles, accounting for quantum confinement, diffusive transport and electrostatic interaction is considered. The electrostatic potential is a solution of a three-dimensional Poisson equation with the particle density as the source term. This density is the product of a two-dimensional surface density and that of a one-dimensional mixed quantum state. The surface density is the solution of a drift–diffusion equation with an effective surface potential deduced from the fully three-dimensional one and which involves the diagonalization of a one-dimensional Schrödinger operator. The overall problem is viewed as a two-dimensional drift–diffusion equation coupled to a Schrödinger–Poisson system. The latter is proven to be well posed by a convex minimization technique. A relative entropy and an a priori $L^2$ estimate provide sufficient bounds to prove existence and uniqueness of a global-in-time solution. In the case of thermodynamic equilibrium boundary data, a unique stationary solution is proven to exist. The relative entropy allows us to prove the convergence of the transient solution towards it as time grows to infinity. Finally, the low-order approximation of the relative entropy is used to prove that this convergence is exponential in time. |
---|---|
ISSN: | 0013-0915 1464-3839 |
DOI: | 10.1017/S0013091504000987 |