Free radical polymerization of glycidyl methacrylate in plasticized Poly(vinyl chloride)
Kinetic of free radical in-situ polymerization of glycidyl methacrylate (GMA), was studied in a complex evolutionary system: poly(vinyl chloride) (PVC) plastisols. A predictive model of conversion-time profile based on free radical mechanism was proposed and structure of the modified PVC system deve...
Gespeichert in:
Veröffentlicht in: | European polymer journal 2008-10, Vol.44 (10), p.3177-3190 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Kinetic of free radical
in-situ polymerization of glycidyl methacrylate (GMA), was studied in a complex evolutionary system: poly(vinyl chloride) (PVC) plastisols. A predictive model of conversion-time profile based on free radical mechanism was proposed and structure of the modified PVC system developed was investigated by NMR analyses. In order to elucidate the mechanism of the reaction, model molecules for PVC were used with NMR and MALDI-TOF characterization. It was found that
in-situ polymerization of GMA in PVC plastisols leads to both homopolymerization and grafting of GMA onto PVC backbone by hydrogen abstraction. For 33 wt% GMA loaded, grafting efficiency is 67% with an amount of grafted poly-glycidyl methacrylate (pGMA) equals to 22 wt%. Thus, this article discloses a new type of PVC plastisols called reactive plastisols where, in addition to usual plasticizers, PVC is modified by polymerizable GMA monomer. |
---|---|
ISSN: | 0014-3057 1873-1945 |
DOI: | 10.1016/j.eurpolymj.2008.07.004 |